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Preface 

With the explosive evolution of computer hardware and software technolo- 
gy, computer animation has been no longer a mystery in our daily life. The 
special effects, photorealistic scenes or vivid characters in movies, video 
games and commercials are all owed to the modern computer animation 
techniques. In recent years, computer animation is always a very hot topic 
in the research field of computer graphics. Researchers, engineers and art- 
ists all around the world are seeking ways to broaden computer 
animation's applications, to make animator 's  work more convenient and 
to make the world more colorful by computer animation. 

By the title of this book, A Modern Approach to Intelligent Animation. 
Theory and Practice, the authors intend to give readers two impressions: 
first, intelligent techniques are the tide o{ modern computer animation~ 
second, the marriage o{ theory and practice is quite crucial in computer an- 
imation, because neither theory nor innocent effort can produce perfect an- 
imation works alone. 

In recent animation industry, some widely used commercial tools, such 
as Maya, 3D Max, Softimage and Motion Builder, have produced abun- 
dant wonderful results. Yet to some extent, producing animation with 
these tools still needs many interactions among experienced animators and 
lacks intelligent assistance, leading to low efficiency and high cost. On the 
other hand, many new intelligent theories and techniques that could be 
applied in the animation production are constantly reported in the top in- 
ternational graphics conferences (i. e. SIGGRAPH, EuroGraphics, CGI, 
SCA, CASA, etc. ). But most of these novel theories and techniques have 
not been transferred into industrial applications. So from this point of 
view, the theories of animation are apart from the practices. 

Motivated by these phenomena and inspired by the rich experiences and 
research results in computer animation, the authors think that it is essen- 
tial to write a book that combines both the theories and the practices in in- 
telligent computer animation. In this book, the authors introduce some 
original theories and algorithms of intelligent computer animation. 
Moreover, these abstract theories and algorithms are demonstrated by 
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some prototype systems developed by the authors, which might help read- 
ers not only understand but also practice these theories and algorithms as 
well. 

The authors plan to achieve two goals by this book. first, for engi- 
neers, this book could be a guidance for developing intelligent computer 
animation applications~ second, this book could be a helpful reference for 
researchers and a shortcut for new arrivals to the research field of intelli- 
gent computer animation. 

This book contains 8 chapters. Each chapter is designed to introduce an 
independent topic and stands alone, which is convenient for readers to se- 
lect the chapter they are interested in. Chapter 1 introduces the prelimina- 
ries of computer animation techniques and the background of intelligent 
computer animation. Chapters 2, 3 and 4 discuss in details video-based hu- 
man motion capture techniques, with each chapter focusing on a different 
variety of methods. Video-based facial animation techniques are discussed 
in Chapter 5. Intelligent motion data preprocessing and management tech- 
niques are presented in Chapter 6. In Chapter 7, intelligent motion data 
reusing methods are introduced. Chapter 8 describes,intelligent approaches 
for character animation. 

This book presents our researches in recent 10 years in the area of intel- 
ligent animation. Our sincere thanks go to the National Natural Science 
Foundation of China who supported our research under Grants No. 
60525108, No. 60533090. 

The authors are extremely thankful to the following gifted colleagues 
and students who have contributed significantly to the publication of this 
book. Prof. Chun Chen, Executive Dean of College of Computer Science, 
Zhejiang University, gave us numerous valuable suggestions and supports 
during the whole process. Prof. Fei Wu, the key member of our group, 
has made great contributions in this research, owing to his creative idea 
and his high sense of responsibility. Dr. Xiaoming Liu, before his PhD 
study at CMU, did a lot of excellent work in video-based tracking as his 
master degree work at ZJU. Dr. Zhongxiang Luo did many talented work 
in tracking and animation during his PhD study at ZJU. We also wish to 
thank Dr. Qiang Zhu, Dr. Cheng Chen, Dr. Jian Zhang, Dr. Feng Liu, 
Dr. Yushun Wang, Dr. Jun Yu, Xin Zhou and etc. We have got so much 
help and support, consequently it is impossible for us to list all of them. 
Without their contributions, this book could not have been written. 

Last, but not least, our thanks go to the Zhejiang University Press, 
Dr. Qiang Fu, the head of the press, Ms. Xiaojia Chen, Dr. Xinping 
Qian, Mr. Jun Feng and so many editors. We are especially thankful to 
those reviewers who did a lot of work for this book. Their responsibility 
and encouragement help the birth of this book. 
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Introduction 

In recent years, computer animation has been a highly active research topic 
and is widely applied in various fields such as movie special effects, adver- 
tisements, cartoon, computer games and computer simulation, etc. From 
a traditional perspective of view, researchers categorize computer anima- 
tion techniques into the field of computer graphics~ however, with the fast 
development of computer animation techniques and enrichment of anima- 
tion producing facilities, computer animation is no longer restricted to tra- 
ditional computer graphics category but rather refers to many research are- 
as, such as image processing, digital signal processing, machine vision and 
artificial intelligence, etc. , to become an interdisciplinary subject. 

The subject of computer animation can date back to the 1960s. As the 
fast growing of computer hardware and theory of computer graphics, com- 
puter animation has penetrated to every aspect of life, including television, 
movie, education, industry, science, etc. Computer animation techniques 
can be categorized into two domains: model animation growing with the 
traditional computer animation, and motion capture animation rising in re- 
cent years. In this chapter, we will introduce some commonly used com- 
puter animation techniques briefly. 

1.1 Traditional Computer Animation Techniques 

1.1.1 Key-frame Animation 

Key-frame animation can be categorized into key-frame interpolation and 
spline driven animation. The problem solved in these two methods is to 
compute the position in a certain frame given by the trajectory of a moving 
object. The motion trajectory is often represented by parametric splines. 
Interpolation with equidistance will arouse the problem of ill-proportioned 
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motion. In order to obtain the well-proportioned motion, we have to pa- 
rameterize the spline. Assume that the length of arch is s=A(/z), where/1 
is parameter. In order to calculate the value of parameter for the given 
arch, we need to solve the function A -1 ( s ) ,  which has no analytic solu- 
tion. Accordingly we solve it numerically, usually by dichotomy algo- 
rithm. In the above solution process, we need to compute the length of an 
arch with a certain parameter value using Simpson method. Guenter and 
Parent [1] proposed a Gaussian numerical integration method, which used 
Newton-Raphson iteration method instead of dichotomy method and stored 
the pre-computed parameter and arch length values to accelerate computa- 
tion, to replace Simpson method for computing length of arch in order to 
build correspondence between arch length and parameters effectively. Watt 
Ez3 employed forward difference plus search table to speed up interaction. 
In situation of non-high precision, this method is very effective. 

Key-framing can be regarded as a parameter interpolation problem. For 
the time control in the interpolation, Steketee and Badler E37 used positional 
splines and motion splines to control motion parameters, where the posi- 
tional spline is a function of position with respect to key-frames and the 
motion spline is a function of key-frames with time. Kochanek and Bartels 
c4j adopted cubic interpolation spline suitable for key-framing system, 
where they segmented the tangent vector into incoming vector and outgo- 
ing vector and introduced three parameters: tensor t, continuity c and off- 
set b to control the spline. The tensor t is used to control the curve de- 
gree, continuity c for continuity control of key-frames and offset b for o- 
vershooting or undershooting control of key-frames. This method allows 
animators to adjust the movement of object without adjusting the key- 
frames. 

In the key-framing animation, the interpolation of key-frame parame- 
ters is usually independent. In this way, the connections between parame- 
ters will result in unnatural motion. Brotman and Netravali Es~ employed a 
method of differential functions from classical mechanics to describe the 
motion constraints from key-frames. Extra forces will be added in the con- 
trol to satisfy these constraints. The smooth and natural motion could be 
obtained by energy control in minimizing the coarseness in trajectory. This 
method is applied for optimal control in inter-connected key-frames, where 
the parameters are position, face direction, linear and angular velocity, 
etc. 

In the key-frame interpolation for facing directions of moving objects, 
Eulerian angle is often used. The rotation matrices of Eulerian angle is un- 
exchangeable, therefore the rotations need to be performed in a certain se- 
quence. Besides, equal variation of Eulerian angle will not lead to equal ro- 
tation variation, which leads to the asymmetry of rotation. Furthermore, 
Eulerian angle may result in lose of freedoms. Aiming at the limitations of 
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Eulerian angle, researchers introduce the concept of quaternion in the fol- 
lowing papers. 

Shoemake E6~ first introduced quaternion to animation, and proposed to 
apply B~izer spline on unit quaternion to perform interpolation. This meth- 
od can be used for local control but is opaque to users. It is difficult for us- 
ers to control vertices by adjusting quaternion. 

Duff ~7~ used B-spline instead of B~zier spline for smoothing rotation. 
This method can achieve C 2 continuity, but the generated curves do not 
pass the control vertices and are hard to control. 

In order to solve these above problems, Pletincks Es? implement interpolation 
by four-point normal curves in space of quaternion to control vertices. This 
method has advantage in solving the control problem of quaternion. 

Barr, et al. Eg~ used a quaternion with an Eulerian angle constraint to 
smoothly interpolate the facing directions, which allows users to apply 
constraint on the end points of trajectory. First they transformed the rota- 
tion angle to the quaternion, and then minimized the tangent acceleration 
of quaternion path in non-Euclidean space, and finally used finite differ- 
ence and optimization algorithms to solve the energy equations. 

The main idea of key-framing is to interpolate the transition frames be- 
tween several given key-frames. Key-framing can be categorized into two 
classes such as key-frame interpolation and spline driven animation. In the 
traditional computer 2D cartoon and 3D animation production, key-framing 
techniques are widely used. Commercial animation software such as 3D 
MAX, Maya, and Motion Builder, etc . ,  are all facilitated with key-fram- 
ing to generate animation sequence. 

The key-framing can be effective in scenarios which requiring less accu- 
racy. However, considering the demand of reality and efficiency in modern 
animation production, key-frame has several deficiencies as below. 
�9 Low efficiency, the key-frames need to be handcrafted by animators 

to enable computer interpolation. 
�9 High experience requirement. The choice of key-frames will to a large 

extent affect the final production and efficiency, which requires abun- 
dant experience of animators. 

�9 Low reality. In the object movement especially character animation, 

animation generated by hand-adjusting key-framing are less realistic in 
behavior or facial expression. 

1 . 1 . 2  Articulated Animation 

In 3D computer animation, character animation is one of the most chal- 
lenging topics because character body has more than 200 freedoms and very 
complicated motion, character body is of irregular shapes, muscles are de- 
formed with motion and there are abundant facial expressions. Besides, in- 
consistent motion will be easily recognized due to the human familiarity 
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with their own motions. 
Articulation animation is often represented by articulation model. Ar- 

ticulation model is n-tuple tree, where each inner node is an articulation 
with a freedom of translation or rotation. For human body, there is only 
rotation articulation. The motion of articulation is controlled by kinematic 
or dynamic methods. Forward kinematics sets key-flames by rotation angle to 
obtain the positions of connected limbs. Inverse kinematics calculates the posi- 
tion of intermediate joints by assigning the position of end joints. Their basic i- 
dea is shown below. 

Kinematic Methods 

Kinematic methods include forward kinematics and inverse kinematics as 
shown in Fig. 1.1. Forward kinematics sets key-frames by rotation angle 
to obtain the positions of connected limbs. In the animation system Pinoc- 
chico by Maiocchi and Pernici E103, the authors segmented the real human 
motion information and stored them in database, and then used animation 
script to guide the motion of character. Inverse kinematics calculates the 
position of intermediate joints by assigning the position of end joints, 
which can be very complicated as the growth of articulation complexity. 
The cost of solution will be higher and higher, where numerical methods 
become a feasible solution. 

Korein and Badler El13 proposed an intuitive method using hierarchical 
working space for each articulation segment, which tries to minimize the 
displacements of articulation positions. The drawback is that users cannot 
control the obtained results. For a complex articulation structure, the re- 
sults may not be natural. 

Girard and Maciejewski 1-12,133 used inverse kinematics to generate articu- 
lation animation. In this method, users assign the coordinates of feet. The 
rotation angle from feet to hip will be obtained by solving pseudo inverse 
Jacobian matrix. This is one of the best methods for generating realistic 
articulation movement. 

An advantage of kinematic methods is that we can set constraints for 
some key positions of an articulation. For example, when a performer 
bends one ' s  knees, the feet can be restricted on the floor to lean one ' s  

~A 

body. 

Forward: A=f(a,  [3) Inverse: or, f l=f-1 (,4) 

Fig. 1.1 Forward kinematics (left) and inverse kinematics (right) 
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When applying kinematics, we can set a constraint from dynamics. Ki- 
nematics and dynamics combination allow animators to be flexible. Isaacs 
and Cohen c147 proposed a kinematics and dynamics combined system DY- 
NAMO, which has three original characteristics. (1) embed traditional 
key-framing system into dynamic analysis as a kinematic constraint~ (2) a- 
ble to represent the reaction behavior by surrounding environment through 
a behavior function~ (3) generate specific motion forces through inverse 
kinematics. 

Boulic, et al E~s? combined forward and inverse kinematics together to 
edit articulation motion, where animators could revise the motion towards 
an object based on user interaction. The key idea of this methoct is to plug 
the desired spatial motion into the inverse kinematic mechanism. 

Philips and Badler E~67 proposed a bipod animal motion control system u- 
sing interactive kinematic constraints, which could both grasp the motion 
characteristics and provide balance and stable results. 

In summary, inverse kinematic methods are simpler than forward kine- 
matic method, but with high computation cost. Articulation animation re- 
quires not only tedious labor of animators but also high computation pow- 
er. Because it is only a simulation of real human motion, the obtained mo- 
tion is usually not realistic enough. Therefore some researchers proposed 
dynamic methods to control articulation motion. 

Dynamic Mes 

Compared with kinematic methods, dynamic methods can produce more 
complicated and realistic motions and need less specification of parameters. 
However, dynamic methods are of high computation cost and hard to con- 
trol. 

Wilhelms and Barsky E17197 proposed a matrix method applying a gener- 
alized force of a freedom only to consider the actual freedom of motion. 
Therefore the reduced articulation constraint needs not to be adopted in 
separate equations. The drawback of this method is that the matrix is not 
sparse, which requires high computation cost to obtain acceleration. 
Therefore this method is not often used. 

Armstrong and Green E20.217 adopted a recursive method from graphic 
simulation to avoid the reconstruction of matrix. The time complexity of 
this recursive method is linear with respect to the number of freedoms, 
which is fast and stable. 

Besides the computation complexity, another important problem in dy- 
namic methods is motion control. If there are no effective control meth- 
ods, users have to provide control instructions such as force or moments, 
which are almost impossible. Therefore, it is necessary to provide high 
level control and coordination facilities. High level control depends on 
lower level control, such as response from collision, impact of friction and 
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damp, articulation constraints to avoid structural artificiality, avoiding un- 
natural motion, position constraint of a certain joint, etc. A method satis- 
fying the above requirements is pre-processing method, which transforms 
the required constraints and control to proper forces and moments and 
plugs into dynamic systems. Witkin, et al E227 proposed a temporal and 
spatial constraint method by minimizing an object function, which can be 
solved by conjugate gradient method. 

An advantage of dynamics is to simulate the reciprocity between ob- 
jects, which refers to two problems: occurrence time and response after 
interaction. Moore and Wilhelms E2a? proposed an equation set to describe 
the momentum conservation and used analytical method to solve the new 
position and velocity after collision. The collision detection and response 
increase the reality of simulation but also the computation cost. 

Motion Control 

The early study of motion control can be found in Zeltzer 's work [24]~ In 
his object oriented system, some human motion like walking and jumping 
was implemented. However, when computing the rotation angle of an ar- 
ticulation, he used kinematics and interpolation between test data, there- 
fore could not realize motion control like alternation of velocity and step 
size. 

Bruderlin and Calvert t2s? proposed a mixture method for human walk- 
ing, which combined object-based and kinematic control techniques. They 
integrated the cycle motion into a hierarchical control procedure, where 
the required motion could be specified on the upper level conveniently 
(such as walking at speed v) ,  and split into low level small tasks, which 
could be solved by dynamic models. In their experimental system KLAW, 
after users specify some parameters such as speed, step length and step 
frequency, the large scale human walking could be generated almost in re- 
al-time. In the procedural control method E26? cubic and linear interpola- 
tions replace the original dynamic method, keeping nearly all the reality. 
Therefore, animators could almost control human motion interactively in 
real-time. 

In the real-time human walking model proposed by Boulic and Thai- 
mann E277 the walking model comes from experimental data divided into 
two levels. The first level was to generate spatio-temporal parameters and 
the second level used the parameterized trajectory to generate the spatial 
position of human articulations. Their kinematic method includes the dy- 
namic characteristics of human walking. 

Raibert and Hodgins E287 proposed a dynamic control method for motion 
with legs, where animals could move at different speed and step (running, 
jogging, galloping and hopping). 

McKenna and Zelter E29? proposed a forward kinematic simulation algo- 
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rithm, whose complexity varied linearly according to the number of articu- 
lations and a motion coordination strategy for hexapod animals. 

Specifying the motion of articulated animals to achieve an object with 
the reality of physical laws is one of the purposes of animators. Witkin and 
kass [3o] proposed a new spatio-temporal constraint method, where anima- 
tors specified content of motion, physical structure of character and physi- 
cal resources for characters to complete the motion. Based on the descrip- 
tion below, plus the Newton law, an optimization problem with con- 
straints is solved to obtain the motion complying with physical laws. The 
realistic motion generated by this method conforms to some principles of 
traditional animation. The spatio-temporal constraint leads to a nonlinear 
problem with constraints, which often has no single result. One of the so- 
lutions is to reduce possible trajectories by cubic B-spline basis functions 
and use constraint optimization to solve the coefficients of B-splines. How- 
ever, the general solution of these nonlinear optimization problems is often 
unknown. Therefore Cohen c31] used a symbolic and numerical comprehen- 
sive method to realize interactive control, where users could guide the iter- 
ative numerical process to convergence. However, as the number o{ artic- 
ulations and time complexity increase, the computation cost is still high. 
This complexity comes from the choice of generalized freedom finite basis. 
Liu ,  et al. [32]used wavelet basis to represent the generalized freedom func- 
tion with time, which had the advantage that we could increase the motion 
detail as needed to reduce the discrete variables to minimum to get a faster 
convergence. 

In computer animation, it is difficult to build interesting and realistic 
virtual objects and to keep their control. We need to compromise between 
complexity and effectiveness of control. For a fixed articulation structure, 
commonly used optimization methods come from automatic dynamical con- 
trol systems, e. g. Ngo and Marks '[3a] stimulation-reaction algorithm, 
Van de Panne's sensor network algorithm. These algorithms successfully 
generated the 2D rigid model motion. For non-stationary 3D objects, Sims 
[34] obtained autonomous 3D virtual animals, which did not require tedious 
designing instructions. The morphology and nurse system to control mus- 
cles are generated automatically by algorithms. 

1 . 1 . 3  Facial Expression Animation 

Since the pioneering work of 3D human facial animation in 1972, many re- 
searches have been done. However, due to the complex structure of facial 
anatomy and subtle non-rigid motions which are hard to be modeled mathe- 
matically, and also due to the human familiarity with facial appearance, 
this research topic is very difficult. Currently realistic 3D facial animation 
can be categorized into the following classes. 

Interpolation method is the basis for the earliest facial animation. First 
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animators designed several key-frames of facial expressions. Then linear 
interpolation was used to create transitions between these key-frames. 
This method mainly depends on the capability of animators and is time- 
consuming. 

Free-form deformation method is to transform facial animation to a sur- 
face deformation problem. Several control vertices form a bounding vol- 
ume, whose motion directly drives facial mesh deformation. This method 
has less input constraints but requires manual segmentation of face, which 
is difficult and tedious for ordinary users. Besides, free form deformation does 
not consider the topology of facial mesh, which leads to some distortions. 

Physical model based method is to approximate the anatomical structures 
of the face, i .e.  skull, muscles and skin. The animation from physical 
models reflects the underlying tissue stresses. Due to the complex topolo- 
gy of human faces, it requires tedious tuning to animate a new face. 

Example based method uses motion vectors to estimate the deformation 
parameters or blending shape coefficients. Predefined morph targets are 
then blended with respect to the estimated parameters or coefficients. 
These approaches are attractive for their stable and accurate results. Nev- 
ertheless, the processes o{ handcrafting of morph targets themselves are 
expensive and time-consuming. 

Expression cloning method is to map the displacements o{ vertices on 
source model to target meshes. The motion displacements are scaled and 
rotated with respect to the local detail geometry of source and target me- 
shes for pro-processing. This method works well with the mapping be- 
tween dense source models and similar target meshes. However,  anima- 
tion by mapping sparse facial motion data to static face models remains un- 
settled. 

Real-time 3D capture method captures both 3D geometry and texture in- 
formation for facial animations. Photorealistic facial expressions can be re- 
constructed by deforming the underlying face model with respect to the 
captured data. The generated head highly resembles the performer. 
Therefore it is not suitable for animating a given static face model. 

1 . 2  Motion Capture Based Animation Techniques 

1 . 2 . 1  Definition of Motion Capture 

Motion capture is one of the hottest research directions in computer anima- 

tion field. It includes measuring position and direction in physical space 
and recording by computers. It captures human body, facial expressions, 
camera and lighting positions and other elements in the scene. Once the in- 
formation is recorded in computers, animators can use it as material to 
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generate character animation and virtual scene. 
In the synthesized animation, animators usually need to control the 

path and properties of scene elements by visually simulation. Motion cap- 
ture animation can synthesize the motion by specifying object path, event 
time and property control. In the computer generated scene, pure motion 
capture animation uses the position and direction of real objects to generate 
movements for synthesized objects. However, due to the constraints by 
geometric volume matching, precision of motion capture data and require- 
ments of creativity, there is no pure motion capture animation. Even some 
strict behavior driven systems such as behavior animation have some pre- 
programming techniques. 

1 . 2 . 2  Introduction of Motion Capture Techniques 

The use of motion capture for computer character animation is relatively 
new, having begun in the late 1970's,  and only now beginning to become 
widespread. Sturman E3s~ introduced the brief history of motion capture for 
computer character animation in detail. Animation by motion capture is 
mapping captured motion to computer generated virtual objects. Usually, 
the object of motion capture is the motion of human and animals, where 
special markers are attached on the joints of objects and tracked position 
and direction by special hardware. 

A motion capture system often includes perception and processing, 
whose complexity is co-related and compromised. Perception includes ac- 
tive one and passive one. The active perception based motion capture sys- 
tem, applied in fields like sports performance analysis and human comput- 
er interface, is simple and widely used, but has high requiremen t of envi- 
ronment control. The passive perception based on natural signal sources, 
such as natural light or electro-magnetic waves, does not require wires. 
The passive perception is applied for intelligent surveillance and human 
machine interface control. The choice between two perception techniques 
depends on compromise in complexity. 

Motion capture systems usually make some assumptions on capture 
conditions, such as motion restrictions of body or camera and appearance 
restrictions of environment and body. Some commercial motion capture 
systems ranging from simple mechanical system to complicated optical sys- 
tem can be divided into following domains. 

Mechanical system consists of potentiometer to measure the position 
and direction of body articulations. The drawback is that the obtained real- 
ity largely depends on the capability and perseverance of animators. 

Magnetic system may be one of the most popular systems nowadays. 
The 3D positions and the relative angles can be acquired by measuring the 
electro-magnetic field using magnetic sensors. The disadvantages include. 
(1) sensitive to metal materials in the capture region~ (2) restrictions by 
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wired sensors; (3) low sampling rate hardly satisfies the requirements in 
sport motion analysis. Besides, this system is very expensive. 

Optical system attaches reflective markers on human body, uses special 
cameras to capture video of high contrast,  and extracts human motion from 
videos. It usually requires 4 to 12 cameras. It can provide high motion data 
sampling rates. However,  the drawback is that the system is required to 
track visual features and 3D reconstruction using computer vision tech- 
niques and is highly expensive. As shown in Fig. 1.2. 

Many motion capture systems have been developed so far. Table 1. 1 
shows some classical historical moments and representative systems. 

Fig. 1.2 New motion analysis TM motion capture system 

1 .2 .3  Summarization 

Nowadays, various motion capture systems are used to capture the realistic 
human behavior and expression data used in the data driven animation pro- 
duction. We will describe the characteristics and shortages in existing mo- 
tion capture systems in the following. 

Electro-mechanical system places potentiometer on the articulations of 
body and uses cables to obtain the 3D positions of them directly. In a 
sense, it resembles the traditional stop-motion technique and is a natural 
transition of motion capture techniques. However,  it largely depends on 
the capabilities and endurance of animators. 

Magnetic system may be one of the most popular systems nowadays. 
Both the 3D positions and the relative angles can be acquired by magnetic 
sensors. The main advantage is that it is efficient, i.e. real-time. It also 
has some disadvantages, such as sensitive to metal materials in the capture 
region, restricted by wired sensors and low sampling rates. 
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Table 1.1 The development of motion capture systems 

Age 

1980--1983 

1982--1983 

1988 

1988 

1989 

1991 

1992 

1992 

1993 

Historical Moments 
Systems 

Simon Fraser Universi- 
ty~Goniometers [a6] 

Graphical 
Marionette EaT? 

deGraf/Wahrmanm 
Mike, the Talking 
Head [a8] 

Pacific Data Images-- 
Waldo C. Graphic [-39,40] 

Kleiser-Walczak-- 
Dozo [41-] 

Videosystem 
Mat the Ghost [42? 

SimGraphics m Mario 

Brad deGraf--Alive [43] 

Acclaim 

Description 

Attached potentiometers to a body and used 
the output to drive computer animated fig- 
ures for choreographic studies and clinical 
assessment of movement abnormalities 

Used two cameras with special photo detec- 
tors to obtain a 3D world coordinate for LED 
markers 

Mike, was driven by a specially built con- 
troller that allowed a single puppeteer to 
control many parameters of the character~ s 
face 

Control the position and mouth movements of a 
low resolution claracter in real-time by hooking 
a custom eight degrees of freedom input device 
through the standard SGI dial box 

Optical motion analysis method was used to 
locate the position of reflective tape placed 
on the body using several cameras 

A real-time character animation system 

A facial tracking system using mechanical 
sensors attached to the chin, lips, cheeks, 
and eyebrows, and electro-magnetic sensors 
on the supporting helmet structure 

A real-time animation system with a special 
hand device with five plungers actuated by 
the puppeteer's fingers 

A realistic and complex two-character anima- 
tion done entirely with motion capture 

Optical system has complex  h a r d w a r e  which  requi res  4 to 12 cameras  to 

cap ture  s imul t aneous ly .  It  t racks  the  ref lect ive m a r k e r s  ( s t i ck ing  to the 

jo in ts )  in video s t r e ams  to acquire 2D posi t ions .  F ina l ly  c o m p u t e r  recon-  

s t ruc t s  the  3D mo t ion  in fo rma t ion  us ing c o m p u t e r  vision principles.  It  can 

r ecupe ra t e  the d r a w b a c k s  of the  above two  s y s t e m s  by high sampl ing  ra tes  

and un re s t r i c t ed  m o v e m e n t ,  wi th  the  cost  of h igh pr ice ,  ope ra t ing  exper i -  

ence ,  unre l iab le  t r ack ing  f rom se l f -occlus ion,  which  are hard  to be over-  

come. 

T h e  d r a w b a c k s  in the  above s y s t e m s  show tha t  a mo t ion  cap ture  sys-  

t em of low-cos t ,  unres t r i c t ive  m o v e m e n t  f rom scene and devices is essen-  

t ia l ,  which  is also the resea rch  issue in the  in te l l igent  an imat ion .  
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1.3 Motion Editing and Reuse Techniques 

As the motion capture systems are widely used, the requirement of editing 
and reusing motion (capture) data comes along. First, due to noise and re- 
strictions from capture site, the captured motion is not accurate. Thus,  
motion data processing is necessary. Second, captured motion is not al- 
ways suitable to the computer generated virtual environments. The data 
need to be adjusted to satisfy the requirements from applications. Finally, 
it is sound to reuse the motion capturedata since the motion capture equip- 
ments are expensive in purchase and use. It also requires editing the data. 
It is important in intelligent computer animation research to edit and im- 
prove the reusability o{ motion data. One most commonly used technique 
is constraint-based motion editing method. 

The most important characteristic in constraint-based motion editing is 
to treat some {eatures of motion data and use requirements as constraints 
and preserve them in processing. These constraints can be divided into two 
classes, spatio-temporal constraints and temporal domain constraints. The 
former depicts a specific pose of character in some moment; the latter indi- 
cates that the editing results need to be natural and fluent. 

Due to the hierarchical representation of motion capture data, each mo- 
tion parameter describes motion through nonlinear relation constraints, 
which make motion editing highly difficult. Therefore, feasible constraint- 
based motion editing techniques all introduce inverse kinematics. Inverse 
kinematics has only two solution methods, analytical solution and numeri- 
cal iterative solution. The advantage of analytical solution is to assure so- 
lution efficiency. But it is hard to obtain results when lacking constraints 
and not general for various concrete algorithms. Numerical iterative algo- 
rithm has good generality but needs expensive computation. It can be clas- 
sified as non-constraint iterative solution or constraint iterative solution. 
The former is to optimize the object function in inverse kinematics by non- 
constraint methods. Such methods usually compromise between accurate 
positions of joint ends and other objectives. The latter is to use the accu- 
rate positions and rotational limitations o{ joints as hard constraints. But 
this method needs specific complex numerical optimization solution. 

Current constraint-based motion editing methods can be divided into six 
categories with respect to the difference in temporal domain constraint pro- 
cessing. They will be described as follows. 

1.3.1 Key-frame Editing 

This kind of motion editing techniques force constraints on key-frames of 
motion data and solve it independently to obtain satisfactory key-frame po- 
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ses, which can be used to produce other frames by interpolation. The 
effect of such techniques depends on the choice of key-frames. When the 
choice of key-frames is proper and adequate, natural editing results will be 
achieved. However, because the optimization is performed on each key- 
frame independently, such techniques themselves cannot guarantee results 
to be natural and fluent. Especially in processing motion capture data and 
motion data from simulating algorithms, results will be more severe. A 
representative of such methods was proposed by Bindingavale [-441, which 
automatically chooses the extremes o{ motion data as key-frames, uses in- 
verse kinematics to solve the key poses and finally obtains other poses by 
interpolation. 

1.3.2  Motion Warping 

One disadvantage of key-frame editing is that key-frames can be set in 
places that are not easy to edit. Therefore, researchers proposed a method 
called motion warping E4sj or displacement mapping E467 to solve this prob- 
lem. Different {rom key-frame editing techniques which interpolate among 
key-{rames, this technique interpolates among the di{{erence between tar- 
get motion and original motion. The work flow of a classical motion war- 
ping system can be divided into two steps E477. first using inverse kinemat- 
ics to per{orm key-frame constraint optimization, then interpolating the 
difference to obtain the variation o{ other frames. 

The advantage of such editing techniques is that key-frame can be posi- 
tioned in any editable place. But there are still disadvantages. (1) lacking 
pose control ability for non key-frames; (2) decreasing control for tempo- 
ral domain constraints, when increasing the number of key-frames for in- 
creasing the control over spatial domain. 

1.3.3 Per-frame Editing 

Per-frame editing performs on data sampled from motion data at high sam- 
pling rate. It is a special key-frame editing technique in a sense. However, 
these two techniques have major differences. Key-frame editing has a 
premise, i.e. the key-frames are defined on the essential time points, and 
there{ore, as long as key-{rames satisfy the requirements, the entire mo- 
tion will also meet them. Regarding the per-frame motion editing, edited 
frames are samples at high sampling rate and have strong temporal correla- 
tions, with short time intervals. Although per-frame editing substantially 
is optimization by constraints from inverse kinematics, previous consecu- 
tive frames are considered in solution process in order to preserve the con- 
tinuity in temporal domain. One important application {or per-{rame mo- 
tion editing is real-time motion editing, e.g. live per{ormance of computer 
puppets, where performer must drive puppet by computers in real-time. 
Other applications are computer games and virtual reality, in which char- 
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acters must generate current pose with respect to current environment, 
without changing previous poses and knowing contents in upcoming 
frames. One representative of such techniques is motion retargeting system 
E487. In each frame, constraints from inverse kinematics are linearly pro- 
cessed. In condition of ill-constraints, the system adjusts the original data 
to meet the constraints applied on the position of end joints. In this way, 
the generated new motion can proceed according to the path set by the per- 
formers and guarantee the fluency in temporal domain. Shin, et al. E49] pro- 
posed a more general real-time motion editing technique, in which Kalman 
filter was used to reduce noise and increase temporal fluency, and a high 
performance inverse kinematic operator was employed to satisfy the con- 
straints of end joints. An important metric was also designed for switching 
reasonably between tracking the end joint positions and its angles. 

1.3 .4  Per-frame Motion Editing Combing Filters 

After deciding how to edit each frame, the next step is the global processing for 
the editing results to solve or alleviate the problems such as burr, unevenness, 
etc. Until now, the second step work is accomplished by low pass filters. The 
first technique published is hierarchical motion editing technique Ea0?, in which B- 
spline fitting is used to implement a low pass filter. 

There is a dominant characteristic in filter aided per-frame motion edi- 
ting techniques, i.e. two processes can be distinguished clearly, first u- 
sing theory of inverse kinematics and adjusting every motion parameter to 
satisfy spatio-temporal constraints, then using signal processing tech- 
niques to satisfy spatio-temporal constraints. In the solution phase of spa- 
tial constraints, all motion parameters on a time point will be processed. 
In the solution phase of temporal constraints, a motion parameter spanning 
the entire temporal interval will be handled. The two phases do not take 
impact from each other into account, and therefore will counteract each 
other 's  effect. Consequently, the two processes are usually performed al- 
ternatively. 

In theory, processing each motion parameter independently is not accu- 
rate. In the level of locality, grouped motion parameters are combined to 
represent rotation parameter. For example, it is meaningless for the angles 
represented by the parameters to perform filtering each parameter in Euler 
angles independently. But in practice, this method is feasible only if used 
for processing displacement. Recently, Lee and Shin Esl? processed the an- 
gle data using FIR filters under exponential coordinate systems. However, 
this method cannot be applied in most of the filter aided per-frame motion 
editing techniques. 

1.3 .5  Spatio-temporal Constraint Based Motion Editing 

Spatio-temporal constraint based motion editing technique is different from 
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other constraint-based methods described above as it does not process each 
frame independently, spatio-temporal constraint here means processing a 
segment of motion at one time in computation. Different from the inverse 
kinematic operator in previous motion editing techniques, which processes 
independently each frame, the spatio-temporal constraint solves a sub-seg- 
ment in the entire motion. 

Spatio-temporal constraint method was first used to specify position for 
a specific character at a specific time and then to solve the optimum motion 
satisfying these constraints. In earlier works E5z.53~, physical laws were 
first applied to motion as constraints and energy consumed in muscle con- 
traction for character motion alternation as objective function. Finally min- 
imizing the energy function will obtain new motion. This synthesized mo- 
tion can drive simple animation conforming to physical laws of single char- 
acter. 

Such kind of spatio-temporal motion editing techniques have both ad- 
vantages and disadvantages. Although such techniques provide opportuni- 
ties to describe motion features by defining constraints or objective func- 
tions, these descriptions are not always feasible. It is challenging to depict 
visual motion mathematically. However, so far, abstract features such as 
anger, elegance, etc. ,  are hard to describe. Furthermore, this kind of 
methods generates an entire new motion by solving a mathematical prob- 
lem, which is usually a huge constraint optimization problem with highly 
complicated computation and low efficiency. 

Gleicher E5457~ proposed a series of improvements of the above spatio- 
temporal constraint method. One of them is spatio-temporal constraint 
motion transformation E543. Theoretically, the difference between this algo- 
rithm and traditional methods is that the former defines constraints closest 
to the original motion, while the latter defines by minimizing energy cost, 
which avoids the difficulty of depicting motion details. It is not necessary 
to describe a motion by constraints, instead by just providing a motion ex- 
ample. Till now, constraint optimization method has been applied to many 
motion editing tasks. Gleicher~s spatio-temporal constraint based motion 
editing method E55~ provides support to real-time interactive motion editing 
abilities. Another extremely valuable work is motion retargeting E56~, 
which can automatically adjust the motion of one character to drive the mo- 
tion of other characters. Besides, Gleicher also implemented motion path 
editing techniques E57~, which could adjust motion by paths. 

It is not an easy task to preserve motion attributes in a specific motion, 
such as realism, elegance, romance like singing in rain, etc. These high 
level motion attributes need to be preserved but hard to be achieved. In 
practice, defining high level motion attributes by mathematics is often re- 
stricted by capability and devotion. Even if motion attributes are encoded 
by  constraint optimization methods, the solution is also highly difficult 
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since complex optimization problems also accompany complex solutions. 

1.3 .6  Physical Property Based Motion Editing 

Physical attributes provide some specific, useful constraints. Although 
some physical attributes can be defined as spatial constraints conveniently, 
some others are often neglected with regard to algorithm performance. 
The most obvious example is that Newton law is usually neglected, which 
is also one important reduction in spatio-temporal motion editing proposed 
by Gleicher. Dynamic constraints and energy law are hard for computation 
under the framework o{ spatio-temporal constraints. 

However, dynamic constraints can be extremely important for some 
motions. Under such conditions, simplifying the problem by neglecting 
Newton law is not feasible. Therefore, Popovic and Witkin Ess~ proposed a 
physical attribute based motion editing technique, which simplified the 
problem by reducing the topological structure of characters and was differ- 
ent from Gleicher's method which neglected physical properties to enable a 
solution in constraint-based optimization. So far, there are few people in- 
vestigating in-depth these physics based motion editing techniques. These 
techniques are never used in application and only used in experiments to 
expand single cycle walk to a full segment of motion. 

1 .4  Data-driven Animation Techniques 

As the motion capture equipments become popular, large commercial body 
motion and facial expression databases have emerged and promoted the 
rapid development of data driven animation techniques. It becomes a focus 
of researchers to produce character animation easily, efficiently and even 
intelligently using existing human motion or expression data. We define 
intelligent character animation as a group of methods to produce character 
animation automatically or by simple user interaction of animators using 
existing body and expression data. it has characteristics of simplicity, effi- 
ciency and intelligence. 

In recent years, many methods have been emerging in academic confer- 
ences and journals, which can be regarded as intelligent character anima- 
tion. They can be divided into two classes according to their target prob- 
lems: (1) data synthesis oriented methods, mainly about using existing 
data to satisfy new requirements of animators; (2) environment sensitive 
character animation methods, producing animation sequence accounting for 
objects in virtual scenes using existing data. 

1.4.1  Data Synthesis Oriented Character Animation 

The object of data synthesis oriented character animation is to synthesize 
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new data satisfying requirements of animators through user interaction or 
automatically based on existing data. The input of such methods is one or 
more motion (expression) data, and the output is a segment of new motion 
(expression) data. There are many similar methods recently in various ac- 
ademic conferences and journals. Rather than citing all of them, we will 
introduce some of classical methods here. 

In 2001, Gleicher EsT? proposed a path editing algorithm, which repre- 

sented the path of original motion as splines and further enabled animators 
to edit the splines for path editing. After obtaining new splines (pa th ) ,  
which will be re-sampled, character local coordinate system will be re- 
mapped at each frame in order to map the original data to new path for sat- 
isfying requirements of animators. 

In 2002, Kovar, et al. [59] introduced a concept of motion graph, which 

contained the connectivity of original data (frames) for generating new da- 
ta by searching on the motion graph and guaranteeing continuous motion 

path. 
In 2003, Kovar, et al. E603 illustrated a data structure named registration 

curves, which contained the time, coordinates and constraints information 
of original data. This data structure can be used to merge two input motion data 
by a group of interpolation algorithms to produce new motion data. 

In 2004, Kovar and Gleicher E61~ proposed a parameterized human mo- 
tion generation method. Different from traditional fusion methods, which 
interpolate with known data and fusion parameters, Gleicher~ s method 
synthesizes new motion by constructing a parameter space to solve interpo- 
lation parameters of object motion from existing data and user assigned 
motion objective parameters. 

In 2000, Brand and H ertzmann E623 tried to learn motion styles from mo- 

tion data, added a multi-dimensional style variable to make style HMM as 
"style machine" and produced new motion data with specified styles. Like- 
wise, Hsu,  et al. E637 used a linear constant model to learn and model the 
difference in styles of data, which was used to change the style of new in- 
put data. Some research work about motion style synthesis can be found in 
[63--65-]. In this book, the authors also propose a PCA subspace based 
style generation and editing method, in Chapter 7. 

In 2004, an example based motion cloning method was proposed by 
Park and Shin E667. The basic idea is to extract several key-frames in the o- 

riginal motion and let animators retarget these key-frames to new character 
model. Then based on the key-frame constraints, motion data cloning is a- 
chieved by dynamic time warping and motion retargeting methods to en- 
dow the remaining motion to the target model. 

In 2002, Liu and Popovic E67~ put forward a physical model based realis- 
tic human motion generation method. According to the input of several 
non-realistic key-frames by animators, realistic 3D character animation se- 
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quence was generated by combining dynamic model. Afterwards, Liu, et 
al. E68.697 published a series of papers about physical model based motion da- 
ta generation, nonlinear optimization and physical model based style learn- 
ing, physical model based multi-character motion generation, etc. 

If readers intend to understand in-depth recent developments or one 
specific method, they can refer to conference proceedings of ACM SIG- 
GRAPH, ACM Symposium on Computer Animation, Computer Anima- 
tion and Social Agents (CASA), Computer Graphics International (CGI),  
Pacific Graphics, and international journals, such as ACM Transactions on 
Computer Graphics, Computer Animation and Virtual Worlds, etc. 

1 . 4 . 2  Environment Sensitive Character Animation 

The objective of environment sensitive character animation is to take exist- 
ing motion (expression) data as input, combine non-life objects in virtual 
scenes, use motion editing and synthesis methods described above, to pro- 
duce final animation sequence. It can be regarded as animation sequence 
synthesis from existing motion (expression) data and virtual scenes. 
These techniques are recently popular in computer animation field. Some 
typical works are introduced as follows. 

Group Animation Generation 

Group animation generation has been widely applied in commercial anima- 
tion industry, e.g. battle scene in the movie "Troy". However, group an- 
imation techniques in commercial animation industry largely depend on the 
intervention of animators and are inefficient. Recently emerging group ani- 
mation generation techniques will be briefly introduced here. 

In 2005, Sung, et al. E703 proposed a target oriented fast group anima- 
tion generation technique. Given the poses, positions and directions at 
specific time points as constraints, the system can rapidly and automatical- 
ly produce the behavior animation of multiple characters and avoid the col- 
lision among characters and scene. 

Treuille, et al. ET~ suggested a real-time group animation model to gen- 
erate animation in urban environment based on a continuous dynamic sys- 
tem. In this model, virtual characters are regarded as movable barriers and 
a continuous dynamic model and a global navigating algorithm are used to 
generate final animation. Likewise, in 2005 Shao Ezz~ depicted in their paper 
a group animation generation method for virtual scene. Different from the 
dynamic model by Treuille, et al . ,  Shao used artificial life to produce 
group animation and comprehensive model for modeling each virtual char- 
acter to enable perception, action and cognition. Other work about crowd 
animation can be found in [73--78].  
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Motion Planning in Animation 

The objective of motion planning in animation is to solve the character ani- 
mation in complex scene or with certain tasks. Two classes of problems 
are well studied: (1) character animation in complex scene; (2) task ori- 
ented character animation. 

Given constraints from animators, such as motion start and motion 
end, motion planning is to generate character animation automatically in a 
complex scene based on the motion editing and reuse techniques. 

In 2003, Choi, et al. E78~ employed probabilistic roadmaps to generate 
character animation in complex scene based on existing data. First, a 
probabilistic model is used to model the footsteps of virtual character in 
scene and used as a basis to retrieve satisfactory motion data from motion 
capture database. Final animation sequence is generated after operations 
such as editing, synthesis, etc. 

Lau and Kuffner [-791 proposed a method to generate realistic human mo- 

tion animation by behavior planning in virtual scenes. First, existing mo- 
tion data segments are abstracted to high level behaviors and associated 
with behavior finite-state machine, which defines the motion capability of 
virtual characters. In runtime, a dynamical programming algorithm based 
FSM global search can produce behavior sequence for character to move to 
a specific position. This method can produce single or multiple characters 
animation in complex and dynamic virtual scenes. 

Similarly, the authors of this book proposed a character animation 
method based on motion planning and motion scripts, which will be de- 
scribed in Chapter 8. 

Virtual task oriented character animation is to automatically synthesize 
a sequence of animation t~ accomplish and use assigned task using motion 
editing, reuse and synthesis techniques based on existing data. Yamane et 
al. Es0j proposed an object operation task oriented animation production 
methodand gave an example of moving objects. First, path planning is 
used to compute the motion path satisfying geometric, kinematical, pose 
constraints at each point of the path. Then final motion sequence will be 
obtained by retrieving similar motion in database and solving inverse kine- 
matic equations. 

1.5 Intelligent Animation 

1 .5 .1  Characteristics and Requirements of Intelligent Animation 

In order to overcome the drawbacks in existing solutions and to get high 
production rate, high intelligence and high reality, a new animation tech- 
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nique m intelligent animation is developing rapidly. 
The production of animation is a complicated flow, including acquisi- 

tion, reuse of animation materials and animation pipeline. Compared with 
the traditional animation, intelligent animation has its own characteristics. 

Human and lives, whose behaviors are indispensable elements, are the 
soul of animation. Therefore, intelligent animation requires animation ele- 
ments to be acquired widely, conveniently, accurately and rapidly in body 
behavior and facial expression data. 

The available key-frame and motion capture techniques show great defi- 
ciency in data reuse. Especially in the key-frame animation, with respect 
to specific animation scene and behaviors, animators draw key-frames by 
hand, which could hardly be used in other animation productions. In the 
aspect of motion and expression capture, commercial software to some ex- 
tent support the data reuse which relies on the animators '  handcraft. 
However, one of the characteristics in intelligent animation production 
technique is to reuse the animation materials efficiently and intelligently in 
order to improve the animation production rate. 

In the workflow of animation production, traditional animation tech- 
niques require a great deal of manual intervention. Animators need to 
make a great effort to produce final animation, such as setup and adjust- 
ment of key-frames, character motion path planning in specific scenes and 
manual stitching of motion data, which reduce the animation production 
efficiency largely. Intelligent animation introduces artificial intelligence to 
traditional animation techniquesto ease animators from heavy manual work 
and realize the intelligent production of animation works. 

1 .5 .2  Overview of Video-based Intelligent Animation Techniques 

In the field of computer animation, human behavior with facial expressions 
is an essential direction. Traditional character animation is also called as 
articulation animation. The movement of articulations is controlled by for- 
ward or inverse kinematics. But as the number of joints grows, the time 
complexity of finding the solution becomes extremely high. The articula- 
tion animation requires not only tedious labor of animators, but also high 
computation cost. The final character movement suffers from lack of real- 
ity because it is only simulation of real motion. Motion capture based ani- 
mation becomes increasingly popular. When actors/actresses perform a 
specific action, the sensors attached to the body joints are returned to com- 
puter. Realistic body motion can be obtained by applying the data on 3D 
human models. Although this technique can generate more realistic anima- 
tion than the articulation animation, the acquisition of motion information 
is expensive and requires special workplace or cables attached on the hu- 
man body, which restricts the freedom of the performer 's  motion, leading , 
to some motion distortion. 



1 Introduction 21 

The above techniques are all from a model perspective to generate ani- 
mation and are self-contained. A complete animation should traverse vari- 
ous phases from physical modeling, coloring, scene setup, motion setup to 
animation generation. For an experienced animator, he can choose a most 
similar one from his past products and revise it to get a desired result. 
This is not always a good solution especially for those who just step into 
the field of animation. Current animation systems are built on the base of 
mathematical models, in which the tuning of parameters is tedious and ob- 
scure. It is hard to master such a system even {or experienced computer 
graphics people, to say nothing of an artist who never uses a computer. 
The obscure terms and operations greatly restricted the animation systems 
from wide application. Based on the analysis, animators have to think dif- 
ferently in two mindsets, one from an artist perspective, and the other 
{rom computer animation, the latter of which largely reduces the creativity 
of animators and decreases the production efficiency. 

From a vie,w of artificial intelligence, people learn new things first by 
imitating. It is also true in animation making. Examples play an important 
role in animation making. An animator often employs his previous success- 
ful products to realize his new idea. The revision of the previous products 
leads to satisfaction of new requirements. The situation is different when 
there are no available examples. One has to start from the very beginning. 
For one animator, the  production quantity and scale are all limited. Fur- 
thermore, there are few published animation productions (including pro- 
ducing process). Therefore, there are few examples for reference. 

The researchers in computer animation field neglected an extremely rich 
source, i. e. video. Human beings have recorded abundant videos ever 
since the birth of movie. It is an under-determined problem to exploit these 
videos for the purpose of computer animation. ~ How to provide the inter- 
face between video and computer animation? The interface is definitely not 
just to read video content to computers, which are solved by many mature 
commercial products. The interface here is to enable computers to acquire 
analyzed high-level structural information from video, such as motion traj- 
ectories, deformation methods, camera positions, foreground, back- 
ground, scene setup, style, etc. 

We can see that the cost o{ acquiring motion from video is extremely 
low (almost zero) by just using a movie script and corresponding software 
to make it possible to obtain 3D motion. In the near future, we can imag- 
ine such exciting applications: 

�9 In a movie, an infant is walking in a Chaplinesque way, which is not 

imitating but derived from the mas te r ' s  real movement, which could 
only be appreciated from several old films in the past; 

�9 An ordinary family one day makes an animation film, where all the 

motion is from the family members, which was far from family enter- 
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tainment due to the expensive hardware requirement in the past. 
Therefore, the basic idea of video-based intelligent animation tech- 

niques is. given a segment of video, extracting 3D motion and expression 
information based on human body movement in the video stream, building 
a motion library for data reuse and developing a set of intelligent tools for 
character animation. In this way animators can generate new character ani- 
mation based on the existing motion information. The video-based intelli- 
gent animation techniques consist of several aspects. (1) video-based body 
motion and facial expression data acquisition~ (2) 3D body motion and ex- 
pression database construction and reuse~ (3)  intelligent generation of 
character animation. 

It is a challenging task to acquire realistic body motion and expression 
from video stream. The contribution of this research path is to propose 
video as a new character animation material and a framework to implement 
these techniques. Whether the comedy films of Chaplin or scudding shot of 
Karl Lewis can be used as animation material means animators can use 
more than ever motion information. Video-based character animation and 
expression are very convenient and intuitive. Users only need to make 
some annotations onthe first frame, and then human motion can be viewed 
from any viewpoints. On the other hand, from a perspective of motion ac- 
quisition, this method removes the restrictions in the previous methods, 
and finally establishes the 3D motion model in the perspective view, which 
can be used in various 3D scene demanding applications such as character 
animation, virtual reality, etc. 
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2 

Natural Video-based Human Motion Capture 

The ability to extract human motion data from video is very important in 
intelligent animation. Videos are abundant in our daily life and the cost to 
make videos is becoming lower. If the 2D/3D human motion data required 
for producing animations can be easily and rapidly extracted from existing vid- 
eos, the cost will be reduced and the efficiency will be improved significanti~r 

This chapter will discuss in detail the key techniques in human motion 
capture based on natural video. By natural video we mean monocular video 
taken by ordinary cameras without special limitations on the sets and tar- 
get objects (i. e. movies, dramas, homemade DV clips). The purpose of 
naming "natural video" is to distinguish it from lab video, in which mark- 
ers are attached deliberately. Natural videos have the following properties: 

�9 They are the monocular and the cameras are not calibrated in ad- 

vance ; 
�9 They don~t have constraints on the capturing environments and the 

backgrounds are typically complex; 

�9 No special markers are attached to foreground objects and frequent 

self-occlusion exists during movements; 
Therefore, capturing 3D human motion from this kind of videos is chal- 

lenging, and the existing techniques are often intricate and complex in the- 
ory. In addition to the discussion in the theoretical level, this chapter will 
also offer the demonstration of VBHAS Vl. 0, the video-based human mo- 
tion animation system developed by the authors. 

Technically speaking, two main tactics exist in recovering 3D human 
motion sequences from natural videos: (I) 3D human motion recovery by 
feature tracking, which tracks feature points in video sequence then recon- 
structs 3D coordinates for the tracked features; (2) 3D human motion re- 
covery by silhouettes, which first extracts silhouette and identifies head 
and limbs position then searches for a corresponding pose under the guid- 
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ance o{ a 3D human model. Below we will elaborate on the two techniques. 

2.1 Human Motion Capture Based on Feature Tracking 

Identifying and tracking objects in image sequence is a classic topic in computer 
vision. Two approaches to this topic have been proposed, which usually follow- 
ing three steps: (1) feature extraction in video frames, such as body part seg- 
mentation, joint detection and identification; (2) correspondence between the 
features of every frame; (3) recovery of 3D human structure and motion from 
feature correspondences. O'Rourke and Badler Eli conducted 3D human motion 
analysis by mapping the input images to a volumetric model. 

The systems of Hogg [2] and Rohr E3] were specialized to a one-degree- 
of-freedom walking model, in which edge and line features are extracted 
from images and matched to a cylindrical 3D body model. Chen and Lee E4] 
used 17 line segments and 14 joints to represent the human skeleton mod- 
el, and various constraints were imposed on the basic analysis of the gait. 
Bharatkumar, et al. Is3 also used stick figures to model the lower limbs of 
the human body, and their goal was to construct a general model for gait 
analysis in human walking. Akita E6] focused on the model-based motion a- 
nalysis for real image sequence, and they used a key-frame sequence of 
stick figures to indicate the approximate order of the motion and spatial re- 
lationships between the body parts. Bregler and Malik ET] recoveredthe 3D 
human motion under orthographic projection by marking the body seg- 
ments in an initial frame. For the special complexity of human motion, the 
existing research methods laid considerable limitations, such as a uniform 
and quiescent background, parallelism of human motion direction to the 
image plane, and skintight clothing of human Es]. 

Considering human body as a complex articulated rigid model, it is very 
difficult to identify different body parts directly from a single image even 
with prior knowledge. Therefore, identifying human body in the first 
frame by manual labeling is a practical approach. If we don ' t  adopt manual 
labeling for the first frame, then the system must solve the following two 
problems: 

�9 The system must automatically identify the outer contour of human 

body in the image, which is a very difficult task with the current im- 
age segmentation techniques; 

�9 The system must segment the area in the contour into different parts 

and assign semantics such as left thigh, right thigh, chest to the body 
parts, which is also a difficult task because how to derive from which 
part of human body as a specific area is not well known yet. 

Manual labeling of the first frame requires users click at the positions of 
human body joints on the image, which is not very hard for the users. Af- 
ter labeling the first frame manually, movements of different body parts 
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can be tracked in the following frames automatically. 
Due to its relatively rare self-occlusion, head is a good choice for ex- 

tracting color features. Besides, once the head rectangle is determined, 
neck is ready to be determined. Similarly, once an upper  arm is deter- 
mined, the elbow is also known and it is only required to identify the hand 

to determine the forearm.  Therefore, it is practical to start from head and 
track the body in a downward order. We approximate the h e a d ' s  move- 
ment as movement in straight line with variable accelerations. First ,  we 
predict its movement by Kalman filter. Then we look for the correspon- 
dence of body parts between frames using image patch matching. 

2 . 1 . 1  Human Skeleton Model 

The 3D human body can be considered as a rigid collection of segments 
connected by joints. For example, an upper limb is formed by two rigid 
segments: upper arm and lower arm connected by elbow joint. If we use a 
line to represent such a rigid segment and simplify the human movement to 
the movement of human skeleton model, we can get a 3D human skeleton 
model as in Fig. 2.1. The model contains 16 joints, and in this chapter we 
call these joints as 3D feature points. The rigid segment represented by 
lines cannot have deformation during movements. The segment propor- 
tions can be obtained from anatomy knowledge. We don ' t  consider the in- 
dividual variation of these proportions. 

The projection of 3D feature points on the 2D plane is called 2D feature 
points. The topological relations in the 3D skeleton model do not change 
during projection, but the length of segments will change. In the 2D 
tracking, we use rectangles to represent the projection of a segment, as in 
Fig. 2.2. For head, our experiments show that rectangle works better than 
circle. Besides, when the whole body is in the camera 's  view range, typi- 

Head 
~ N e c k  

R_Shoulder m 1 ~ ~ ~ 1  ~ L_Shoulder 

Chest 
R_Elbow--i~ 1 ~- l l_ L_Elbo w 

R_Wrist--4 b-L_Wrist 

R_Hip ~ ~ ~  L_Hip 

Pelvis 

I L_Knee 

L Ankle 

R_Knee 

R Ankle 

Fig. 2.1 Human skeleton model Fig. 2.2 Rectangles in 2D human body 
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cally, the areas occupied by individual body segments are small, so it is de- 
sirable to simplify these segments to rectangles. The lengths of the rectan- 
gles are the lengths of the projected segments and their widths can be de- 
termined from the prior knowledge. After user manually labels the first 
frame, the rectangles in this first frame are also known. Therefore,  if we 
can find the new position of these rectangles in the following frames, we 
also get the 2D movement of the skeleton on the images. 

2 . 1 . 2  Feature Tracking in 2D Image Sequence 

Because there is little self-occlusion on a human head, its color information 
can be acquired easily. After the head block is tracked, one feature point 
of t runk,  the neck, is also fixed. So, beginning with head, we track every 
body part from top to bottom. Now we detail the tracking of head, trunk 
and limb respectively. 

For every frame in the sequence, the head may move toward any direc- 
tions in the next frame. If a local search mode is used, the result may be 
not global optimal. If a global search mode is used, it suffers low efficien- 
cy. So we adopt the combination of these two. To reduce the search area 
of head point in the next frame, we introduce Kalman filter based global 
motion model to predict the motion of head point. Then in order to fix on 
the head accurately, we select a search path to do morph-block based 
match around the predicted point. Our experiments show that using Kal- 
man filter to predict the head point has a good performance. 

Regarding the sequence of motion images as a dynamic system, the 
head point can be described by the following equation: 

P = P ' + t /  (2=1) 

where the Coordinate P = ( x ,  y)T is the tracked head point, P' is the actual 
coordinate, and t/ is a 2D Gaussian random noise with mean value 0 and 
covariance R. We use 3rd polynomial to represent the motion trajectory of 
point P. The state vector is defined as: 

S = ( P , P '  ,P") (2-2) 
/ ! 

where F ' - -  ( x ' ,  y ')T and x , y represent the velocity of point P in the x ,  
P"=(x" " ) ~ " " y directions respectively, , y and x , y represent the accelera- 

tion of point P in the x ,  y directions respectively, The state equation is de- 
fined as: 

S(k4-1)  = F . S (k)  4- G . n(le) (2-3) 

where 

f T21 I!x:2122 12 12" T --4-12 

F =  02 12 12 �9 T , G-- 12 " 

2 02 12 [_ 12 



32 A Modern Approach to Intelligent Animation: Theory and Practice 

k = 0 , 1 , 2 , ' "  represents the serial number of the frame, Iz is a 2 X 2 unit 
matrix, 02 is a 2 X 2 zero matrix, and T is the time interval between 
frames, n (k) = (nx (k) ,  n, (k))  T describes the acceleration noise in the x ,  

y directions. Suppose n ( k )  conform to the Gaussian distribution with even 
0 and covariance 12. This state equation shows that point P is doing varied- 
acceleration linear motion in all the x , y  directions. In practice, we track 
the coordinate of point P, i.e. X ( k ) = P ( k ) .  So the measurement equation is: 

X ( k )  = H .  S ( k )  + ~ l ( k )  (2-4) 

where H = [ I 2 , 0 z , 0 2 J  is a 2 • 6 matrix. In the above "conditions, we get 
the recursive equations of Kalman filter as follows. 

State vector prediction equation: 

Sk'= F" Sk (2-5) 

State vector covariance prediction equation: 

Pk' = F �9 P k - 1  ~ F'r + G �9 Q �9 G T (2-6) 

Kalman filter gain matrix: 

K k = P k '  �9 H ~ �9 ( H  �9 Pk'  " H ~ +  R )  -1 (2-7) 

State vector covariance update equation: 

P k = P k ' - - K k  " ( H .  Pk'  �9 H T +  R )  �9 Kk (2-8) 

State vector update equation: 

S, = S , ' + K ,  �9 ( X , - - H  �9 S, ' )  (2-9) 

Above we have applied the Kalman filter to predict the possible position 
of head point in the next frame. Then in order to fix on the head accurate- 
ly, we choose a search path (see Fig. 2.3) to do morph-block based match 
around the predicted point. 

Because the head and the neck points have been located in the first 
frame, the height m of the head block is the distance between these two 
points and the proportion of height m to width n can be acquired in anato- 
my. The color information of m X n pixels in the block is saved as the color 
model for the matching of subsequent frames. Since the head block in the 
image is the projection of human head, the head motion will change the 
shape of projection. For example, the head block becomes larger, which is 
likely to happen when human is moving toward the camera. So, the block 
match must be processed between morph-blocks. Therefore, we propose a 
weighted morph-block similarity algorithm based on sub-pixel. 

Definea feature morph-block A =  { ( x , y ) , m , n , 0 }  (see Fig. 2. 4 ) ,  
where ( x , y )  is the intersection of one side and the middle line, m is the 
height of block A, n is the width of block, and 0 is the angle between the 
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predicted point 
m r 

n0LAL0. 
Fig. 2.3 Local search path Fig. 2.4 Two feature morph-blocks 

middle line and x axis. Now there are a reference block A =  { ( x , y )  , re ,n ,  
0} and a comparative block A' = { ( x ' ,  y ' ) ,  m ' ,  n ' ,  O' }. To calculate their 
similarity, we use a algorithm as follows. 

! 
Step 1 If m X n ~ m' X n' , then r o w = m ,  co lumn=n;  else row = m , col- 

u m Y t  - - -  Yl  t , 

Step 2 In block A we depict column and row pieces of gridding lines even- 
ly in the direction of arctan 0 and arctan ( - -1 /0 )  respectively. The 
intersection of any two gridding lines is named as sub-pixel X0 
( O ~ i ( m ,  O ~ j ( n ) .  Then we use quadric linear interpolation to 
compute the color of every sub-pixel, X o [-Red], X o l-Green], 
X0 [Blue]. 

Step 3 In block A' we depict column and row pieces of gridding lines e- 
venly in the direction of arctan fl' and arctan ( - -1 /0  r) respectively. 
Then linear interpolation is used to compute the color of every 
sub-pixel, X'0 [Red-], X'0 [-Green], Xto [Blue]. 

Step 4 Calculate: 

d i f f o  =WR �9 I Xo [- Red-] -- Xo t [- Red-] I + 
W~ �9 ] Xo [Green]--Xo'[Green-][  + 
WB " I Xo [Blue-I--X0 '[Blue] I (2-10) 

S = 1 / (W 1 ,, E d i f f o  + Wz �9 ~ d i f f o  ) (Z- 11) 
( i , j )  E bx ( i , j )  6 b z 

where WR, W~, WB represent the weights of each element in 
RGB, bx, bz represent the two regions divided in the block, and 
W1, Wz represent the weight of each region in the whole block. In 
the case of the head, we define the center region as bl and the mar- 
ginal region as bz, respectively: 

( i , j ) E b l ,  if m / 4 ~ i ~ ( 3 / 4 ) m  and n / 4 ~ ( 3 / 4 ) n  
( i , j )  Ebz ,  otherwise " (2-12) 

Here we have W I ~ W z .  This weighted morph-block similarity meas- 
ure is based on the observation that the marginal region of head has a more 
salient change of color in motion; while the center region has a relative 
smaller change. S is used to represent the similarity of two morph-blocks. 
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Note that the 3D human skeleton 
of frame t -  1 has already been 
established when human joint is 
tracked in frame t. Now we intro- 
duce how to predict the initial 
height of head block in frame t u- 
sing the 3D human motion. The 
model of projected image height 
of head is illustrated in Fig. 2.5. 

H 

S 2, z,_: 

Fig. 2.5 Prediction of head height 
H is the actual height of head in 

the 3D human model, f is the focal length of the camera, and O is the op- 
tical center of the camera. A point ( x t , y , )  in frame t is related to point  
(X, ,  Y,, Z, ) in the 3D camera coordinate system by (x, ,  y,) = (X, �9 f / Z , , Y ,  �9 

f / Z ,  ) ,  where Z, is the distance of the head from the camera in frame t. Thus we 
have: 

h , = H  . f /Z,  (2-13) 

where h, is the height of head in frame t. Assume the head is approaching or 
moving away from the camera at a locally constant velocity v, i.e. 

Zt--  Zt-1 + 7.3* T (2-14) 

Usingequation (2-14) to Substitute Z, in equation (2-13), we get the initial height 
h in frame t. 

For a frame sequence, the tracked head block in current frame is de- 
fined as a reference block A, and the head block in the next frame as a 
comparative block A'. 0' is set in the range of [0--A0, 0+A0].  By the pre- 
vious prediction algorithm we get an estimated height of the head h,, and 
set m' in the range of [-h,--Am, h, + Am]. Since the height and width of 

! 
head zoom in proportion, n is set in [ h , ( n / m ) - - ( n / m ) A m ,  h , ( n / m ) + ( n /  
m)Am].  Starting from the predicted point, for every point ( x , y )  on the 

f f 0 ! search path, we form a block A' by { ( x , y ) , m  ,n , } and calculate its 
similarity with the head block of current frame A. The system records the 
block A' which has the largest similarity. After finding the largest similar- 
ity, the search process will continue until it does not find a block which 
has a larger similarity on the search path of the next one circle. If it does, 
repeat the process mentioned in the last sentence. In the end, the last re- 
corded A' is the head block in the next frame. And for the self adaptability 
of color model, linear weight is utilized to update the color model Eg~. 

The tracking of trunk and limb also depends on the above algorithm. 
But we must pay attention to other two problems. Firstly, because of the 
large limb motion from frame to frame, we introduce a prediction mecha- 
nism to estimate the possible limb position in the next frame. As the ex- 
ample of thigh, the relative angle from knee to h ip  is preserved for every 
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frame. While doing prediction, we calculate the average value of such an- 
gles in the previous two frames, use it as the initial angle 0', and fix on O' 
in the scope of (0 ' --AO,O'+AO).  Our experiment shows that this predic- 
tion mechanism can reduce the search area of block match for the large mo- 
tion. Secondly, we show how to deal with self-occlusion in the tracking of 
limb. For example, there is relative small similarity in the block match of 
an upper limb when in one frame the trunk occludes that upper limb. But 
the similarity will be larger as soon as the occlusion disappears in one sub- 
sequent frame. Therefore, the Similarity S is also defined as the reliability 
of block match. In the block match process of frame sequence, the reliabil- 
ity of every limb match is preserved. If there are one or several low relia- 
bility frames between two relatively high ones, we use the joint coordi- 
nates of high ones to obtain the joint coordinates of low ones by linear in- 
terpolation. Our experiment shows that it can reduce self-occlusion to a 
certain degree and optimize the tracking performance. 

2.1.3 Reconstruction of 3D Human Motion Sequence 

To establish the sequence of 3D human motion skeleton under the perspec- 
tive projection, we must first acquire the camera parameter, i.e. camera 
calibration in computer vision. We use Newton method to solve this prob- 
lem by the correspondences between 3D model and 2D image. Then we 
calculate the coordinates of the 3D feature points on the human model u- 
sing the pinhole model and the proportion knowledge of human skeleton~ 
In the frame sequence, the assumption of motion continuity is applied to e- 
liminate the ambiguity of 3D motion information effectively. 

2.1 .3 .1  Linear Model Based Camera Calibration 

As shown in Fig. 2 . 6 ,  consider two coordinate systems, OwXwY,,Zw and 
OcXcYcZc. The former is an object space coordinate system in which the 

camera 
Oo coordinate frame 

--Xo 

o projection 
Z~ \ pointP 

~ w / ~( /projection Y \ /  
/ plane 

world 
coordinate frame 

P 
Zo 

Fig. 2.6 Projective transformation 
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3D feature points are located. Thus Pw is a point in this coordinate system 
with coordinate (Xw ,Yw ,Zw). The camera is referenced to the camera co- 
ordinate system OcXcYcZc. In particular, we assume that the image plane 
is perpendicular to the OcZc axis and at location Zc- - f .  Point coordinate on 
the image plane is obtained by the perspective projection and denoted by 
P(u,  v). Thus every point Pw in OwXwYwZw can be translated to (u ,  v) 
on the image plane with two transformations. Firstly, OcXcYcZc is ob- 
tained by a rotation R and translation t of the coordinate system 
OwXwYwZw. The 3D coordinate of Pc is related to that of Pw by. [Xc] [{x ] 

Yc = R  Yw - - t  (2-15) 
Zc Zw 

Secondly, through the prospective projection, the projective point of Pc 
is at P whose coordinate is given by: 

f 2 ~  ' 2~ ( u , v ) =  (2-16) 

The goal in camera calibration is to determine R and t when some corre- 
sponding features between 3D human model and 2D image plane are given. 
In the above two equations, it is difficult to calculate the partial derivative 
of u, v to unknown parameters. So we transform them into: 

IX' [Xw 
Y' =R Yw (2-17) 
Z' Zw 

( u , v ) =  Z'+D~ ' Z +D~ -+-D" (2-18) 

The meaning of R in the above equation is the same as that of equation (2- 
15). We substitute translation t with D~ ,Dy ,D~. P' is a aD point with coordi- 
nate (X',Y~, Z'). These two representations are equivalent when t and D~, D,, 
D~ are related by. 

T 

f ' f ' 
The rotation parameter R can be represented by a rotation vector (W~ ,W~, 

W~) T , whose direction is equal to that of rotative axis and whose module is e- 
qual to the rotation angle. Now the projective parameter can be represented by a 
vector, [-Dx,Dy,Dz,Wx,Wy,Wz ] and the partial derivative of u, v to them can 
be calculated expediently. We use corresponding feature lines between 3D hu- 
man model and 2D image plane to calculate projective parameters and define the 
equation of a line, with a point (u, v) on it, by: 

u m  1 
- - u +  v =d  (2-20) 
~rr t  2 + i J m  2 + 1 " 
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where d is the perpendicular distance from the origin to that line, and m is 
the line slope. From equation (2-20) we can get the partial derivative of d 
to u, v. Combining with previous calculation, the partial derivative of d to Dx, 

D r , Dz, Wx ,  Wy ,  Wz will be obtained. After that, we may use Newton method 
to calculate a revision vector, h = [ M)~ , &Dr, &D~ , AW~ , AWy , AW~ 3. 

This method is detailed as follows. Firstly, beginning with the initial 
values of projective parameters, [Dx, Dy, D~, W~, Wy, W~], let the 3D 
model project to the image plane according to the current parameters. Sec- 
ondly, calculate the error between the projective line and the feature line 
on the image plane, which results in the following equation: 

ad ad w ad w Od O---'~x Z~Dz + -~y y + -~zz Z~Dz + -~x m x +-~yy m y + - ~ ,  AWz -- Ed (2-21) 

where Ed is the perpendicular distance from the end points of a 2D feature 
line to the projective line. Because there are two end points on one line, we 
can get two equations such as equation (2-21) for one pair of corresponding 
feature lines. So given three pairs of such lines, six equations will form a 
linear equation group. Its solving will lead to the revision vector h. Then h 
is added to current projective parameters for revising projective parame- 
ters. Thus, we may solve the linear equation group again. All the Ed val- 
ues in that equation group will be smaller than a predefined threshold after 
several iterations, meaning that the six projective parameters have been 
obtained. 

There are at least three pairs of corresponding lines needed in Newton 
method. In the human model, we choose the line between left and right 
shoulders, and the two lines between the chest and two shoulders. These 
three lines constitute a steady isosceles triangle of human upper trunk. 
This choice is based on the observation that this triangle should not distort 
itself in human motion in most situations. In the following description, 
each feature object of this triangle is named as a key jo int ,  key line, or key 
triangle. In the first frame, the projection of key joints on the image plane 
is known by manual marking. The key joint position in the object space co- 
ordinate is specified by our system. As long as the proportion of each key 
line accords with the anatomy, we can always find the location and orienta- 
tion of camera in the object space coordinate system and let the perspective 
projection of key triangle superpose with the upper triangle of trunk on the 
image plane. 

2.1 .3 .2  3D Reconstruction Corresponding to the First Frame 

From the above, the six projective parameters have been obtained. Now 
corresponding to the first frame, except for three key joints, all the other 
3D feature points of human model are not determined yet. The next step is 
to acquire the 3D feature point coordinate Pc (Xc ,Yc, Zc) of human model 
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corresponding to a known 2D feature point coordinate P(u,v).  As known 
from the pinhole model, to link the optical center and a projected point will 
get a radial, on which all the points project on the same point in the image 
plane. In order to locate the 3D feature point on this radial, we begin with a 
known neighboring point p and use the knowledge of human skeleton length Len 
to find a point. The distance from the point to p is equal to Len. 

Now we detail our algorithm by the example of inferring unknown right 
elbow point Pc from known neighboring point, the right shoulder point 
Pc r. The coordinate of right elbow point in the camera coordinate system 
is (Xc,Yc,Zc). (u,v) is the coordinate of P ,  in the image plane. There is 
an equation as follows: 

d(Pc',Pc)=Len (2-22) 

where d(Pc', Pc) represents the distance between Pc r and Pc, Len is the 

upper limb length in the 3D human model. By combining equation (2-22) 
with (2-16),  we can get an equation with only one variable Zc. This equa- 
tion can be visualized as a line intersected with a sphere with center Pc ~ 
and radius Len (see Fig. 2 .7 ) .  According to three possibilities, intersec- 
t ion,  tangency and apartion, of a space line intersected with a sphere, the 
solution of this equation has also three cases: 

�9 Two solutions. It means there are two possible positions for the el- 

bow point. This ambiguity in the course of modeling from 2D to 3D is 
caused by this ill-posed problem itself. Two methods can be used to 
eliminate the ambiguity. Firstly, we can utilize diversified human a- 
natomy constraints. For example, the lower arm cannot extend back- 
ward when the upper arm extends forward. Secondly, brightness in- 
formation may be used. In the two solutions, one is always close to 
the optical center of camera and the other is far away. We make an 

Oe 

L 

P 

, ,  pojection 
plane 

. . . .  \ last kg~y 

Fig. 2.7 Ambiguity elimination in the subsequent frames 
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assumption that an image region, which is closer to the optical cen- 
ter, has a relative higher brightness. We choose a small region a- 
round the feature point on the shoulder and the elbow respectively, 
transform the RGB color model to HLS model for every pixel in these 
two regions, and calculate the mean values of L component for two 
regions. If the value of elbow is larger than that of shoulder, we select 
the solution closer to the optical center, and otherwise we select the farther 
one. Our experiment shows that the combination of these two methods can 
eliminate the ambiguity effectively. 

�9 One solution. We may get a unique point, which is just the position 

of 3D right elbow point. 
�9 No solution. There are two reasons, one is the tracking error of 2D 

feature point, and the other is that the skeleton proportion of this 
person does notaccord with the ordinary anatomy. The system will 
adjust the skeleton length for renewal computation. 

Now, with the solution order from center to margin shown in Fig. 2.8, 
we can get all the 3D feature point coordinates of the human model in turn. 

JR_Shoulder H R_Elbow H R_Wrist ] 

IL- s ou,, er H I _E, ,ow H  _Wrist I 

Chest 

Neck H Head ] 

Pelvis ~ R_Hip H R_Knee ] =1 R_Ankle ] 

L_Hip H L_Knee H L_Ankle I 

2.1.3.3 

Fig. 2.8 The solution order of 3D feature point 

3D Reconstruction in the Subsequent Frames 

In the last subsection, we have constructed the 3D human motion skeleton 
for the first frame. In fact, as soon as the coordinates of three human key 
joints for every frame are known, the corresponding 3D human model can 
be obtained by the algorithm introduced in Sects. 3.1 and 3.2. Now we 
discuss how to determine the coordinates of three key joints in the subse- 
quent frames. " 

Given the key joint coordinates, P7 ( X T , Y T ,  ZT) (i = 1 ,2 ,3 ) ,  of frame n 
in the camera coordinate system, let us calculate the corresponding key 
joint, P7 +1 (X7 +1 ,Y7 +~ ,Z7 +1 ) ( i = 1 , 2 , 3 ) ,  of frame n + l .  The correspond- 
ing 2D feature point in the image plane is (U7 +1 , V7 +~). The relation of 
P7 +1 and (U7 +l , V7 +1 ) c an  be described as: 

P7+l----( UI+I " Z/+l V/+l" ZT+l Z~ +1 ) ( i = 1 , 2 , 3 )  (2-23) 
f ' f ' 
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As mentioned in Sect. 2 . 1 . 1 ,  the skeleton length in the human model 
remains constant, which means. 

d(PT,Py)=d(P "+~i ,P]+I) (i,j  = 1 ,2 ,3  andi=/=j) (2-24) 

Using equation (2-23) to substitute p~+l and p]+l in equation (2-24) ,  
we will get a nonlinear equation group, which has three variables and may 
be solved by the grads method. Thus,  we have obtained the key joint coor- 
dinate of frame nq-1 in the camera coordinate system. 

Then the algorithm mentioned in Sects. 3.1 and 3.2 is used to calculate 
all the 3D feature points in the human model corresponding to frame n-k-1. 
Here a key assumption is made. the human motion has the property of 
continuity. While the ambiguity appears, we calculate the distances of the 
two solutions to the 3D feature point of frame n respectively and select the 
solution with a smaller distance. Our experiment shows that this method 
has excellent performance. The continuity and authenticity are embodied 
in the long sequence of human motion. In the example of Fig. 2 .7 ,  there 
are two possible positions, P1 and P2, while locating the right elbow point 
corresponding to frame n-F1. From the dashed line in Fig. 2 .7 ,  we know 
that the right elbow point in frame n is p, .  Thus we select P1 as the right 
elbow point of frame n-b-1 for it is closer to point P'. 

2 .1 .4  VBHASV1.0 

We implement a prototype system named Video-based Human Animation 
System (VBHAS V1.0)  using the algorithms introduced in this Chapter. 
The input of the system is an image sequence (or video clip) containing hu- 
man motion and the output is the 3D coordinates of all joints in the skele- 
ton. User labels the first frame manually, and the system interactively 
tracks the joints in subsequence frames. We don ' t  put any constraints on 
the human motion, so sometimes the system tracks joints incorrectly. Us- 
er interaction is incorporated to eliminate these errors. The 3D reconstruc- 
tion is done by the system automatically. In the following we show some 
experimental results of VBHAS V1.0. 

2.1.4.1  Sitting Motion. 

Figs. 2. 9 - - 2 .  14 show the results for a sitting motion at the 1st, 5th, 
10th, 15th, 20th and 25th frames. The left image of each figure shows the 
2D features on the frame image. The 16 features on the first frame are la- 
beled by user with a mouse. Features on other frames are generated by 
VBHAS. It can be seen that the tracking results are excellent. The middle 
image of each figure shows the 3D reconstruction at the same viewpoint as 
the real frame and the right image shows the 3D reconstruction at a view- 
point rotated by 60 degree. The 3D reconstructions are also satisfactory. 
We can also note that the ambiguity is successfully eluded in each frame. 
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Fig. 2.9 Sitting motion at the 1st frame 

Fig. 2. l0 Sitting motion at the 5th frame 

Fig. 2.11 Sitting motion at the 10th frame 
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Fig. 21 12 Sitting motion at the 15th frame 

Fig. 2.13 Sitting motion at the 20th frame 

Fig. 2.14 Sitting motion at the 25th frame 
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2.1.4.2 Walking Motion 

Figs. 2 .15--  2.19 show the results for a walking motion at the 1st, 5th, 10th, 

15th and 20th frames. In this case, the projected human height varies notably 

with time. The results show that the algorithm can deal with this situation. 

Fig. 2.15 Walking motion, at the 1st frame 

Fig. 2.16 Walking motion at the 5th frame 

Fig. 2.17 Walking motion at the 10th frame 
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Fig. 2.18 Walking motion at the 15th frame 

Fig. 2.19 Walking motion at the 20th frame 

2 . 1 . 4 . 3  Movie Mask 

We extract a clip of 2 seconds from the movie Mask. The clip contains 48 
frames. Figs. 2 .20--  2.24 show the results for this clip at the 1st, 5th, 17th, 
26th and 39th frames. It is well known to the audience of that movie that in this 
clip the dancing is performed at a very high speed with significant displacement 
of limbs. Our system can successfully track such fast motion. 

Fig. 2.20 Clip from Mask at the 1st frame 
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Fig. 2.21 Clip from Mask at the 5th frame 

Fig. 2.22 Clip from Mask at the 17th frame 

Fig. 2.23 Clip from Mask at the 26th frame 

Fig. 2.24 Clip from Mask at the 39th frame 
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2 .1 .5  Discussions 

Above we have discussed our algorithm in detail for 3D human motion cap- 
ture based on feature tracking. Our system VBHAS V1.0 can successfully 
track and reconstruct many human motions. But there are still some limi- 
tations which will be discussed below. 

First l e t ' s  discuss some limitations in the 2D feature tracking. 

�9 If the colors of clothes and background are very similar, the tracking 

will be affected. Because in such cases there is no obvious boundary 
between foreground and background, the matching of image blocks 
will be heavily interfered. 

�9 When part o{ a limb has very large deformation at some instant,  the 

tracking will also be degraded. In other words, the system deals with 
gradual deformation better. 

�9 The skeleton model we proposed cannot accommodate some degrees 

of freedom of real human motion. 

�9 If frequent self-occlusion is present,  the tracking performance will de- 

grade heavily. We propose two methods to solve this problem. First ,  
user interaction can be incorporated. Second, 3D prior knowledge of 
human body can be employed to minimize user interaction. 

Next we discuss some limitations in the 3D reconstruction. 
�9 If error occurs in 2D feature tracking, then the 3D reconstruction will 

be impaired, since the 3D reconstruction is built entirely upon the 2D 
feature tracking. And in many cases the 3D reconstruction can even 
magnify errors. 

�9 If the body model of the real subject is notably different from the 

standard model, the 3D reconstruction can also be affected. The solu- 
tion is to adjust the model used by the algorithm, either automatically 
from the video, or manually by user. 

2 .2  Human Motion Capture Based on Silhouette 

2 .2 .1  Overview 

In this section we present a robust framework for recovering 3D human 
motions from uncalibrated monocular videos (or image sequences) without 
markers. This framework first extracts silhouettes from the images and 
then analyzes the silhouettes to get the positional information of 2D body 
configurations. The silhouettes and the derived information then serve as 
the sources of an object function we try to minimize. The function is com- 
putationally efficient and reflects the correspondence between a 3D pose 
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and the silhouette. Finally, smooth motions are generated from the recov- 
ered poses. This framework is free from common problems in motion 
tracking such as error propagation and difficulty in recovering from track- 
ing errors. Moreover, the system can locate where user should specify 
manual frames in order to complete the recovery robustly,  which is espe- 
cially important to minimize user intervention. The experimental results 
show that even in difficult situations, complex motions of a large variety of 
types can be robustly recovered with reasonable intuitive user interactions. 

Fig. 2.25 shows the system workflow. First ,  silhouettes are extracted 
from video and are analyzed to determine the 2D positions of body trunk 
and head/hands/feet .  Then,  3D poses are recovered from the analyzed sil- 
houettes. Finally, a smooth motion is generated from poses. 

This section is organized as follows. First we introduce silhouette ex- 
traction and silhouette analysis. Then the object function and optimization 
process to recover poses are elaborated. After that ,  the strategy to recover 
an entire motion clip is provided. At last we present the experimental re- 
sults and discussions. 

Fig. 2.25 System workflow 

2 . 2 . 2  Silhouette Extraction and Analysis 

The first step is extracting silhouettes from video and removing noises. We 
choose to recover poses via silhouettes as the following reasons: 

�9 Silhouettes can be relatively robustly extracted, especially when we 

have access to the background model~ 

�9 Silhouettes are relatively insensitive to noises and irrelevant factors 

such as the clothes texture or the dynamic cockles, which sometimes 
make the color, texture or internal edges caused tracking fail; 

�9 Simple as they look, silhouettes preserve a lot of information. 

Silhouette extraction involves segmenting images into fore- 
ground and background. Current segmenting methods are based on the op- 
tical flow ~107, temporal image differentiation El17, or background subtrac- 
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tion [12]o Here we use a simplified method by assuming static background 
and static camera. Horprasert ,  et al. [12] employed a statistical approach to 

model the background where a color model of brightness distortion and 
chromaticity distortion helps remove shadows. The method is robust a- 
gainst shadows and other global or local illumination changes. We take a 
similar approach as theirs. Other more complex methods could also be 
used. For example, Haritaoglu, et al. [13] presented a method that uses a 
dynamic background model to accommodate background changes. 

The extracted silhouettes are processed by a pass of erode and dilate. 
Then noises are further reduced by removing isolated foreground pixels 
and filling tiny holes. 

We denote the silhouette from video at frame t to be Sv  ~ (t = 1 , 2 , ' " ,  T ,  
where T is the total frame number).  Sr is actually a binary function: 

1, if pixel on row x and column y is foreground (2-25) 
$ v ' ( x , y ) =  0, otherwise 

After silhouette extraction, the next step is to get some 2D geometric 
information. We try to determine the 2D positions of body trunk and 
hands/feet on the silhouette. 

By "body trunk" we mean the main axis of the torso between the cen- 
troid and the head. It should be noted that sometimes arms are raised to a 
position higher than head, so body trunk cannot be simply determined by 
the centroid and the highest location in the silhouette. Vignola, et al. [14] 
proposed a method that can deal with this problem, but their method ap- 
proximates the trunk with a straight line and may fail when the trunk 
bends. We extend their method. First ,  the Euclidean distance transform 
on the silhouette is calculated, which, for everypoint ,  finds its distance to 
the nearest boundary. Then for every horizontal line above the s i lhouet te 's  
centroid, we find a point with the largest distance value. In this way, we 
get a curve of the most "inward" points on every horizontal line. If hands 
are not raised higher than head, the curve will be continuous, going from 
centroid all the way up to the head'  s top ( (a)  and (b) in Fig. 2 .26) .  If the 
hands, however, are raised higher than head, discontinuity will happen in 
the curve, and the discontinuity point is at the head. In such cases, we cut 
the curve at the discontinuity point and only reserve the lower part ( ( c )  
and (d) in Fig. 2 .26) .  After that ,  we fit a 2nd order polynomial on the 
curve as the body trunk. The 2nd polynomial approximates the trunk quite 
well because it allows smooth and gradual bending, while avoiding com- 
plex winding such as S shape. 

Next,  we detect hands and feet. Perhaps the most intuitive way is by 
looking at the curvatures on the si lhouette 's  boundary. Hands and feet are 
places where large positive curvatures are encountered. The detailed 
process is as below. 
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Fig. 2.26 Trunk discovery. The points with largest distance value on every horizon- 
tal line form the dash curve, from which we fit a 2nd polynomial (the solid 
curve) as the trunk. If discontinuity occurs on the dash curve, then only 
the segment below the discontinuity point is used 

Step 1 Forevery point on the s i lhoue t t e ' s  boundary,  calculate its curva- 

ture. The curvature is approximated by the angle made by a point 
and its two neighbors n points away,  where n is a small number. 
This helps to exc ludeabrup t  curvature changes caused by noises. 

Step 2 Mark out all points whose curvatures are larger than a threshold. 
Step 3 Conduct a clustering on all marked points along the boundary. U- 

sually the marked points are already well clustered, so very simple 
clustering method is sufficient. Clusters with too few points are 
discarded. 

S tep4  All the remaining clusters are hands or feet. 
Note that  if a hand or foot is not stretched and cannot be distinguished 

from the torso on the si lhouette,  it cannot be detected. 
Some other methods could also be used to detect hands/ feet .  We can 

simply construct a kernel that  resembles hands or feet and convolve it with 
the silhouette. Another  method proposed by Fujiyoshi and Lipton Els? uses 
s i l h o u e t t e ' s  star skeleton to analyze human motion. The distances be- 
tween silhouette centroid and boundary points are calculated and form a 
one-dimensional function, and obvious local maxima are taken as head, 

hands or feet. We implement the abovementioned methods and it is some- 

what surprising that  in most cases the curvature method works best. Dif- 

ferent methods can be used jointly to get higher accuracy. 

So far we have only got the positions of hands/ feet  but we d o n ' t  know 
which one is the left hand or the right foot, so we have to label them. The 
automatic labeling is based on temporal information. User is required to 
manually label a frame where all hands and feet are detected. Then the 



50 A Modern Approach to  Intelligent Animation. Theory and Practice 

system automatically labels other frames successively. In order to achieve 
higher accuracy, we employ Kalman filter to make predictions before labeling. 
Movements of hands/feet are assumed as with constant acceleration locally. 

Fig. 2.27 shows some results of silhouette analysis. Note that  the head 
is always detectable along with the t runk,  but hands/feet  might not be de- 

t zr~f, Zrrf to denote if tected for some frames. We use four binaries Zr~h, Zrrh, 
corresponding hand or foot is detected on silhouette at frame t (1 if detec- 
ted and 0 otherwise; subscripts lh and rf for left hand and right foot, and 
so on) ;  and we denote the detected positions of head, hands and feet on 

t l~h, ltrh, l~f, ltrf ( i f  a position is not detected, then corre- frame t a s  /head 
sponding l is not defined). 

The information derived in silhouette analysis is used in pose recovery later. 
The trunk is used for scaling and aligning skeleton to the silhouette; the end 
sites ~ locations are used in the object function, as we elaborate below. 

Fig. 2.27 Silhouette analysis result. Note in the second silhouette only one hand is de- 
tected 

2 .2 .3  Pose Recovery 

We consider the pose recovery as an optimization problem: find a pose vec- 
tor p' at frame t that optimizes a scalar object function E(p ~) that encodes 
the dissimilarity between the pose and the silhouette. 

First  we formulize the pose vector p' .  Each joint in the human skeleton 
model has 3 DOFs which quantify its rotation in its p a r e n t ' s  local coordi- 
nate frame. Due to biomechanical constraints ,  each DOF has its own valid 
range. The root joint has another 3 DOFs,  namely,  its translation in the 
world coordinate. In pose recovery step, we consider pose as the vector of 
all joints '  rotations including root. The roo t ' s  translation is not included 
since it is the f igure ' s  global position instead of pose configuration. 

Next we formulize the object function E ( p ' )  . E ( p ' )  must  reflect the 
dissimilarity between the pose and the silhouette,  and it should be compu- 
tationally efficient, since the object function will be evaluated many times 
in the optimization process. We design an object function E ( p ' )  that has 
the following three components. 
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The core-area term 

When the human skeleton model is configured at the same pose as indica- 
ted in si lhouette,  the body trunk and four limbs on the skeleton, after 
scaling and aligning, should lie in the core areas (or medial axes) of the 

silhouette. To highlight the core areas, s i l h o u e t t e ' s  Euclidean distance 

t ransform is used. See Fig. 2.28. To quantify this core-area constraint ,  we 

uniformly sample some points on the t runk and limbs on the skeleton mod- 

el, calculate the 2D positions of these points when the skeleton is con- 
figured at pose p ' ,  and then define E . . . . . . . .  as the negative average distance 

value a t  the sampled poin ts '  2D locations on the s i l houe t t e ' s  Euclidean 
distance transform. 

M 

1 ~ II SV~tt  (Xm ,Ym) II (2-26)  

where M is the total count of sampled points,  (x~ ,y~) is the calculated 2D 

position of the ruth point,  and Sv~t, which is the distance transform of sil- 

houette Sr takes in a position coordinate and returns the distance value to 

the nearest edge. 

Note that  the scaling and aligning of skeleton against the silhouette are 

conducted using the detected t runk on the silhouette. Besides, if some end 
sites are not detected on the si lhouette,  the corresponding limb does not 
contribute to E ......... 

Fig. 2.28 The definition of E . . . . . . . . . .  The dashed part of the skeleton is the trunk and 
limbs where we sample points, which are represented by circles. This is 
only an illustration; real sampled points are denser. Note in silhouette (b) 
the dashed arm is occluded and no points are sampled on it 

The coverade term 

It is not sufficient to determine a pose merely by the core-area term. 

Eco ...... puts constraint in one direction. It says that  t runk and limbs should 

lie in the core areas of si lhouette,  but it is not required that each core area 
of the silhouette should be fully covered by some limb. It is possible that 
an arm is not stretched enough to fill in the entire a r m ' s  core area, or even 
the arm might be mistakenly superimposed on the torso,  while a very good 
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E . . . . . . . .  value is still maintained. Therefore,  we need another constraint 
E . . . . . .  ge that controls the coverage of the limbs. In silhouette analysis we 
have determined head/hands/ fee t  positions on the silhouette. And we can 
use their positions to estimate the l imbs'  coverage. We define E . . . . . .  ge as the 
mean distance between the 2D positions of head/hands/ fee t  on the skeleton 
model and the detected counterparts on the silhouette. 

E ...... ge--[[ /head-/head ][ +7['lh [1 /lh--/llh [[ +Trrh 1[ lrh--/lrh [1 _qL 
~,, II l,f--l~f II +Trrf II /rf--/trf II (2-27) 

where l is the position detected .on the silhouette and l ~ is the position cal- 
culated by projecting skeleton to 2D plane. Here we have dropped all su- 
perscript t for simplicity. 

Note that if an end site is not detected on the silhouette, it simply does 
not make contribution to this term. 

The smoothness term 

Finally, the smoothness term guarantees that the poses do not change ab- 
ruptly temporally. We use two previous frames to measure the smooth- 
ness. 

Esmooth .... = ]] pt_2pt-1 +pt--2 ]1 2 (2-28)  

Combining the three terms,  the object function is: 

E (p '  ) = a l  E ........ -[-a2 E ...... ge +a3E .... th . . . .  ( 2 -  29) 

Derivation-based optimizing methods cannot be used to minimize 
E(p'). Also, the complexity of E ( p ' )  requires the optimizing method be 
able to avoid being trapped in local minima. We adopt Simulated Annealing 
( S A ) ,  which converges to the global minimum with probability 1 when the 
initial temperature is sufficiently high and the annealing process is suffi- 
ciently slow. In practice we cannot ensure these two "sufficiency" but SA 
does provide great help to get rid of the local minima. Also, by setting the 
parameters such as the initial temperature and annealing rate, it is very in- 
tuitive to control how much ability we give SA to get out of a local mini- 
mum. Also note that when the initial temperature is high, the initial con- 
figuration is of little importance, which helps to eliminate the need of pro- 

viding a first guess in some cases, giving chances to get rid of error propa- 
gation/  accumulation. 

2 .2 .4  Motion Recovery 

We have described how to recover a pose from a frame. When recovering 
motions from video, it is not desirable to recover the poses from frames 
separately and simply combine the poses into motion sequence. It is not 
possible to evaluate the 3D configuration of a limb if i t  is not identified on 
the frame. On the other hand, as illustrated by [16-], recovering a pose 
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from a single frame may have reflective ambiguity that  is difficult to deal 
with. Therefore ,  temporal information should be exploited when recove- 

ring motions. 
The detection of end sites is a very important  source in our pose recov- 

ery process and we can imagine that it is easier to recover pose from a 
frame where all limbs are stretched out and detected, even little temporal 

cue is used. We classify all the frames into two types. Frames where all 

the end sites are identified are classified as reliable f rames ,  while frames 

where at least one hand or foot is not identified are classified as unreliable 
frames. Obviously,  reliable frames and unreliable frames tend to cluster,  

dividing the whole video into interleaved reliable sections and unreliable 
sections. Fig. 2.29 shows the segmentation of a real video clip. 

Fig. 2.29 Segmentation of a video clip into reliable and unreliable sec- 
tions. The numbers on boundaries are the last frame num- 
bers in the closing sections 

Clearly,  reliable frames have larger chances to be correctly recovered. 
Also,  since temporal cue can be employed, unreliable frames near the sec- 
tion boundaries (such as the 64th frame in Fig. 2. 29) have larger hope 
than the ones deep inside the section (such as the 70th frame) to be cor- 
rectly recovered. We set a threshold L,  if an unreliable section is longer 
than L,  the frames deep inside it have so poor recovery chances that user is 
required to specify a manual frame in the middle of the section. When 
specifying a manual frame, user is asked to specify the positions of all the 
joints on limbs. The manual frame splits the long unreliable section into 

two short ones and this procedure may be repeated until no unreliable sec- 

tions longer than L is present. Then the following recovery algorithm is 

taken. 
Step 1 For each reliable section, automatically select a base frame. The 

selection is directed by intuition that  frames where the four limbs 
are stretched far apart are easier to recover, so a frame with the 

maximum distance among the hands and feet is selected. 

Step 2 Recover base frames,  using full SA but not temporal information 
(aa in equation (2-29) set to 0). Full SA means high initial tem- 

perature and no initial guess (initial pose is set to be 0). 

Step 3 For each base frame, incrementally recover its surrounding frames 
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both forward and backward, using temporal information and par- 
tial SA, until all frames in two surrounding unreliable sections are 
covered. For example, if the 40th frame in Fig. 2.29 is selected as 
a base frame, we incrementally recover the 21st frame to the 49th 
frame from it. Partial SA means low temperature and with initial 
guess by the surrounding recovered poses. 

Step 4 Now for every unreliable frame, two pose candidates are obtained 
from the two surrounding base frames. We blend the two candi- 
dates to get the result ,  using the inverses of the distances to the 
two surrounding section boundaries as the weights. 

In Step 2, base frames are recovered independently, without any tem- 
poral information. This means that our algorithm self-restarts at every 
base frame and so is free from error propagation. Even if some frames in 
an unreliable section are recovered completely wrong,  the error will not 
pass over the section boundary. Besides, since the end sites are labeled as 
left or right in silhouette analysis and temporal information is used for un- 

reliable frames, reflective ambiguity is gracefully avoided. 
Now we have pose candidates for all frames, from which smooth motion 

is generated. We combine the pose candidates, and apply a Gaussian low 
pass filter to ensure smoothness. 

There remains one important thing we have overlooked so far. We dis- 

carded the feet '  s translation during pose recovery, and now we have to re- 
cover them in order to get the correct motion. This task is straightforward 
if the motion is known to be ground-contact static, e .g .  at any time at 
least one foot is on the ground and no slide exists, because we can always 
tell which foot is on the ground via the recovered 3D pose. For motions in 
which the body may fly in the air (such as jumping) or slide occurs (such 
as ski ing) ,  fee t ' s  locations are generated by key-frame, where user is re- 
quired to specify the fee t ' s  location for some key-frames. 

2 . 2 . 5  Results 

We use a human skeleton model with 16 joints including feet. Therefore,  
the pose vector is 48D. Note that due to biomechanical limitation, the val- 
id range for pose vector is a closed sub-region in 48D Euclidean space. 

We test our system on some types of motions. Fig. 2.30 shows the re- 
covery result for a synthetic video of jumping followed by a turning. The 
video has about 400 frames. This scenario is not particularly difficult, 
since during the jumping the body is towards the camera and hands/feet  
are generally stretched o u t .  Since we keep track of the relation of left and 

right,  the turning is also easy to follow. 
Fig. 2.31 shows the result on a real walking video. Our  system success- 

fully recovers the 3D motion with 110 frames. 
Fig. 2.32 shows the result for a real shadowboxing video of about 1,100 
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Fig. 2.30 Results for synthetic jumping video 

Fig. 2.31 Results for real walking video 

frames. This is the most challenging one in our experiments. The difficul- 
ty comes from the loose clothes which make the b o d y ' s  trunk and limbs 
significantly thicker than the standard human model, as well as the motion 
complexity and the video length. Here we can see one of the advantages of 
our method. The fitting of a skeleton instead of a full body model [17] a- 
gainst a distance transformed silhouette greatly alleviates the problem of 
model dissimilarity. However, our system fails to follow a turning in the 
middle of the motion, so user has to manually specify the yaw angle for 
several frames as constraints. 

2 . 2 . 6  Discussions 

In this section we have described a system that robustly reconstructs 3D 
human motions from monocular videos. Instead of tracking feature points 
directly on the image, which is very sensitive to noises and self-occlusions, 
we take a model-based method using silhouettes, as in many applications 
silhouettes can be relatively reliably extracted. Our system first analyzes 
the silhouette to get the 2D positions of body trunk and end sites (head, 
hands and feet). Then,  poses are recovered. For reliable frames, less tern- 
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Fig. 2.32 Results for real shadowboxing video 

poral information is used, while for unreliable frames, temporal informa- 
tion plays an important role. Also, if some unreliable sections are too long 
to be easily recovered, manual frames specified by user are exploited. 

We fit the skeleton instead of full body model E177 to the silhouette to 
help alleviate the effect caused by irrelevant model dissimilarity. This also 
significantly reduces the computational burden of the object function and 
allows the use of computational intense simulated annealing to help avoi- 
ding local minima. In this way, we gracefully tackle the common two diffi- 
culties in model-based methods presented in the introduction. 

Our system successfully recovers different kinds of full body motions 
with reasonable user i'nteraction. Compared to other systems, ours has the 
following advantages. 

�9 More robust. We don~t  build the pose recovery on feature points 

tracking. And our system doesn ' t  suffer from error propagation. 

�9 Occlusions are dealt with gracefully. Short occlusions can be resolved 

automatically, while long occlusions, which are indeed very difficult 
to recover, are recovered by user specified information. 

�9 The system has the ability to locate places where reconstruction is dif- 

ficult and user interaction is needed. This is the key to minimizing us- 
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er intervention. It is improper to let the user flip through the frames 
and make the decision. 

�9 The system is highly adaptive. By setting a few parameters such as 

threshold L, it is very easy to meet different requirements. For ex- 
ample, when accuracy requirement is very high, it is straightforward 
to tune down L, which will cause potentially more manual frames but 
a more accurate result. Also, SA is inherently highly adaptive by in- 
tuitively setting its parameters. 

The inspiration of the system is from the observation that current tech- 
niques for 3D reconstruction from monocular video remain far from satis- 
faction. Some systems claim the ability of fully automatic reconstruction of 
unconstrained human motion, but the robustness problem prevents their 
practical use. Other systems are more robust,  but they only work for par- 
ticular motion typesand  need proper databases and extensive training. We 
feel that at the current technical level, a more practical and useful system 
might be one that can robustly recover motions without prior knowledge, 
but with some user interaction when necessary. Also, to minimize user in- 
teraction, the system should be able to determine where user interaction is 
mostly needed. Unfortunately,  there seems to be not much of this in liter- 
atures. 

Video-based reconstruction of complex human motions is always a chal- 
lenging work,  and our system does have some limitations. In videos where 
highly clustered background and unpredictable camera movement are pres- 
ent, silhouette extraction is a difficult task; and now we are studying this 
problem. Also, since temporal information is employed, our system might 
fail on abrupt or very fast motions because of the sample rate of plain vide- 
os. Cameras with high sampling rates can solve this problem, but this is 
also a serious limitation to the sys tem's  usage. 
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Human Motion Capture Using Color Markers 

At the current technical level, capturing human motion data accurately and 
directly from movie clips remains to be a difficult problem. In the scenarios 
with frequent self-occlusion, the performance of VBHAS V1.0 will be im- 
paired, which limits the system's  use in some professional fields requiring 
high accuracy (e. g. sports analysis, mathematical analysis). 

To overcome this difficulty, we design a suit of tight clothing attached 
with color markers and the technique is also developed which can track un- 
constrained human motion using this tight clothing. This chapter will dis- 
cuss in detail the technique and the corresponding system VBHAS V2.0. 

3.1 Tracking Color Markers 

There exists some previous work on 2D tracking using color markers. Re- 
hg and Kanade [1] used self-adaptive template method in the hand tracking. 
Hogg E2] developed a system based on feature tracking aiming at walking 
motion with only one DOF. Segen and Pingali [3] used corner points of 
moving edges as features. Bregler and Malik [4] used a method of solving 
simple linear system. In [ 5 - -7 ] ,  Sum of Squared Distance (SSD) tech- 
nique was employed. However, these methods do not perform well with 
complex motions. The results of tracking color markers are the 2D posi- 
tions of the marker ' s  centers in the image. Fig. 3.1 shows the workflow of 
the tracking using color markers. The method can estimate the Centers of 
color markers accurately and validate the tracking results automatically. If 
the validation fails, the system takes some other steps (morphing block 
matching) to ensure correct tracking. 

This section is organized as follows. First the adopted human model 
and color space are presented. Then we illustrate the use o{ Kalman filter 
to predict for the next frame. After that, we briefly introduce the edge de- 
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Fig. 3.1 System overview 

tection algorithm and line extraction algorithm. Then ,  two algori thms to 

construct optimal rectangles from lines are elaborated. Finally,  a more ro- 

bust tracking algorithm based on morphing block matching is presented. 

3 . 1 . 1  H u m a n  Model  and Color  Space 

We view the 3D human body as a rigid articulated model (Fig. 3 . 2 ) .  For 
example,  an upper limb is formed by an upper arm and a lower arm linked 
by the elbow, and the upper limbs and torso are linked by shoulders. 
There are 16 joints in the human model. In our tight clothing, 15 color 
markers  (corresponding to 15 joints in the human model excluding head) 
are attached to the gray clothes. The head joint can be treated as a marker  
without  the use of color markers  on the clothes. 

Fig. 3.2 Human model and color markers on joints 
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It is very important to select a suitable color space in operations such as 
color edge detection and color histogram estimation. Most existing algo- 
rithms on color images can be viewed as extensions of the corresponding 
algorithms on intensity images. Consequently, many researches aim to ex- 
ploit some information contained in the color images that is not present in 
intensity images Es?. Ohta, et al. Eg~ proposed a widely used method that 
can extract a group of orthogonal features. We select three fixed orthogonal 
features (equations (3-1)m(3-3))  in edge detection and histogram analysis. Ex- 
periments show that this color space is superior to many other ones. 

11= (R + G +  B) / 3  (3-1) 
l z =  (R -- B) / 2 (3-2) 

13= ( 2 G - -  R - -  B) / 4  (3-3) 

3 . 1 . 2  Kalman Filter 

We view the color markers '  positions in the image sequence as a dynamic 
system. Use P to denote the position in an image. The position P - - ( x , y ) T  
can be expressed as p__pZ_.krl, where P' is the actual coordinate. ~/is a 2D 
Gaussian random noise with mean value 0 and covariance R. The trajectory 
of point P can be expressed as a 3rd polynomial. We define the state varia- 
ble as S = ( P , P ' , P " ) ,  where 
P' = ( x ' ,  y ' )  T denotes P '  s veloc- 
ity and P" (x" u) T = , y denotes P '  
s acceleration. Kalman filter is 
employed to predict the position 
in the next frame. Fig. 3.3 shows 
Kalman f i l t e r ' s  prediction result 
for the chest joint. It can be seen 
that the performance of Kalman 
filter is satisfactory. 

Ground truth position 
-~, ,~ --Position predicted by 

, ,  , , 

Fig. 3.3 Prediction result of Kalman filter 

3 . 1 . 3  Edge Detection and Edge Extraction 

Here the goal of tracking is to get joints '  positions for each frame, which 
implies two steps: color markers extraction and color markers '  matching. 
In order to simplify following processes, we introduce the window concept 
which enables simultaneous color markers extraction and color markers '  
matching. 

�9 In the first frame, the m o d e l ' s  pose is constrained to stand idly. 

Thus,  the rough positions of all joints can be easily estimated. Based 
on these first predicted positions, a window of size M X M  can be de- 
fined for each joint and the subsequent tracking algorithms are con- 
strained within the windows. 

�9 In frame n-+-1, the windows are defined as centered at the position pre- 
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dicted by the Kalman filter. The size of the windows can be dynamically a- 
dapted to ensure that each window contains an entire color marker. 

3.1.3.1 Edge Detection on Color Images using Canny.Method 

The conventional Canny edge detection method [-107 contains three steps: 
(1) Filter the grayscale with 2D Gaussian filters to smooth the image; 
(2)Convolve the smoothed image with Canny operator to get gradients at 
each pixel; (3)Detect edges using the gradients by some rules. 

The conventional Canny method can only be applied to grayscales. The 
frame images we have here are color images, so we apply Canny method to 
detect edges on three images composed ot? the three orthogonal components 
defined in Sect. 3 . 1 . 1  and apply an OR operation to get the final edges. 
Experiments show that this method can significantly reduce the lost edges. 
After the gradients are calculated, Canny method relies on two parameters 
T1 and Tz to control the judgment of edges. For each pixel, the rules are: 
(1) If the gradient is larger than T1, it is an edge pixel; (2) If the gradient 
is less than Tz, it is not an edge pixel; (3) If the gradient is between Tz 
and T1, judge by the following sub-rule. 

If a path starting at this current pixel and ending at some edge pixel can 
be found with the gradients on all pixels on the path being larger than Tz, 
label the current pixel and all pixels on the path as edge points. 

In our case, edges are detected on an image sequence, and some inter- 
frame correlations will be present by setting dynamic T1 and Tz as thresh- 
old. Values of T1 and Tz are reduced at places where edges are present in 
the previous frame to increase the probability of edges being detected in the 
current frame, while values of T~ and Tz are increased at places where no 
edges are present in the previous frame to reduce noises. Fig. 3 .4  shows 
the comparison of the improved Canny method and the original method. It 
can be seen that the improved method detects more meaningful edges with- 
out introducing significant noisy edges. 

markers in original frame conventional Canny method' s result improved method's result 

Fig. 3.4 Comparison of conventional Canny method and the improved method 

3.1.3.2 Edge Extraction Based on Hough Transform 

After the edge detection, we get binary images indicating whether a pixel 
is an edge pixel or not. The edges in the binary images are not continuous 



3 Human Motion Capture Using Color Markers 63 

and what we are concerned is whether they can form some known curves. 
Hough transform is an effective method to deal with this problem. Hough 
transform converts the image to a parameter space, where the parameters 
are represented by grids, and the best parameter grid is searched for. 
Hough transform has excellent tolerance and robustness in the case of dis- 
continuous edge and noises and is very suitable in this scenario. There are 
two kinds of color markers used in this approach, circle (corresponding to 
the head) and rectangle (corresponding to markers on other joints). 

Circle Extraction 

Three parameters are needed to represent a circle in the Cartesian coordi- 
nate system, so the complexity of Hough transform is O(k 3). In order to 
reduce the complexity, we adopt a two-step method. 

In the first step, we try to detect the circle~s center rather than the ra- 
dius R. In the polar coordinate system, a circle can be represented as. 

X0 = X- -  Rcos 0 (3-4) 

Y o = Y - - R s i n  0 (3-5) 

where (Xo,Yo) is the center ' s  coordinate and ( X , Y )  is the coordinate of 
pixels on the circle. The local gradient can be calculated by. 

g =  (gZ + gZy )1/z (3-6) 

Our improved method makes R vary in the normal direction of ( X , Y )  
rather than all directions. Therefore,  we can directly calculate the sine and 
cosine values in equations (3-4) and (3-5) �9 

cos O=gx/g (3-7) 

sin 0=  gy /g  (3-8) 

Combining the above equations, we can get: 

Y0 = X0 tan 0-t- Y--  Xtan 0 (3-9) 

The position of c i rc le ' s  center can be determined by equation (3-9).  
Here,  only two parameters are still present and so the complexity is re- 
duced to O(k 2 ). 

In the second step, we can get the radius R in the 1D parameter space. 

R =  ~ / (X- -Xo)  2 + ( Y - - Y o )  2 (3-10) 

Line Extraction 

The extraction of line is simpler. In order to avoid unlimited slope, lines 
are represented using parameters in the normal direction: 

Xcos 04- Ysin 0=  p (3-11) 
Voting mechanism is used to get the lines. Some inter-frame correla- 
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tions will be present and the line information in the previous frame is ex- 
ploited to improve the performance. Specifically, we make the grids near 
the value on the previous frame thinner and the grids far away from the 
values on the previous frame thicker in order to increase the accuracy with- 
out notably increasing the complexity. Fig. 3.5 shows a line extraction result. 

Fig. 3.5 Line extraction result of Hough transform 

3.1 .4  Rectangle Construction 

Due to the noises and the deformation of the color blocks, in most cases it 
is very difficult to extract four lines as the rectangle boundaries. After 
Hough transform, eight lines with highest probabilities are reserved and 
now our task is to select four lines from the eight to approximate a rectan- 
gle. In this section, two methods are proposed: Algorithm 1, which is 
based on the boundary analysis, and Algorithm 2, which exploits the in- 
formation from the previous frame. 

Algorithm 1: Rectangle Construction By Boundary Analysis 

In Sect. 3 . 1 . 3 ,  each extracted line Ei can be represented by two parame- 
ters.  Ei = { 0j, pj } ( i - -  1 , . . . ,  8). On the other hand, the boundary lines of 
a rectangle has the relation. E~// E~ or E~IE~. Let E0 denote the extrac- 
ted line with the highest probability, then next we '  d like to find the line 
that is parallel to E0 and two lines that are perpendicular to E0. 

The parallel relation implies. 

Io,-Oo I<~oN Ioi+Oo-18o[<eo (3-12) 

I P,-Po I>ep (3-13) 

The perpendicular relation implies: 

110~-0o 1-901<~0 (3-14) 

Equation (3-12) ensures that parallel lines have the same orientation 
and equation (3-13) ensures that two parallel lines are different. The line 
parallel to E0 can be found using equations (3-12) and (3-13). One of the 
two lines perpendicular to Eo (we call this line Er can be found using e- 
quation (3-14) and the other perpendicular line can be found using its par- 
allel relation with Ec. 
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Because the reserved eight lines have different probabilities, in the a- 
bove calculation we assign lines with higher probabilities with higher prior- 
ities. This helps to eliminate the effect caused by noises. 

Sometimes due to the self-occlusion, one or more boundary lines are 
lost. In the case of more than one boundary lines being lost, the rectangl e 
construction will fail (causing the system to resort to Algorithm 2 for the 
rectangle construction), while the case of one line being lost can be solved 
within this Algorithm 1 by automatically compensating the lost line. Given 
a line L1 and a center predicted by Kalman filter (X0 ,Y0), 

L~ = Ysin 0q- Xcos 0 (3-15 ) 

then the line at L~'s symmetric position with regard to (X0 ,Y0) (we call 
this line Lz) is: 

Lz = Ysin 6+ Xcos 0 (3-16) 

Combining equation (3-15) and (3-16), we get: 

Lz = 2 X (Yo sin 0+ X0 cos 0) - -  L1 ( 3-17 ) 

Algorithm 2. Rectangle Construction Based on the Previous Frame 

Suppose the four boundary lines derived in the previous frame are E~ t =  
{O~',p/' } ( i = 1 , " ' , 4 ) .  In the current frame, we select E k ' ( k = l , ' " , 4 )  
from the eight lines with the highest probabilities as the boundary lines in 
the current frame by the criterion of minimizing S. 

S = F ( k )  �9 (Wo " I1/(O~-O~') l -+-W, " I1 / (Pk--Pk ' ) [ )  (3-18) 

The eight lines are sorted by descending probabilities, so F ( k )  is mo- 
notonously descending. Wo, Wp are two weights. Considering the angle 
difference is more effective, we set W o > W p .  Now four boundary lines for 
the current frame can be selected using equation (3-18). 

The usage of Algorithms 1 and 2 is as follows. 
�9 Algorithm 1 only considers the state in the current frame, so it is not 

affected by the errors appearing in the previous frame. In addition, 
Algorithm 1 can detect the lost line and automatically synthesize a 
line for compensation. However, the drawback is that error lines 
might be introduced. Therefore, in Algorithm 1, the line extraction 
result must be verified using color and shape information. If the veri- 
fication fails, then the system resorts to Algorithm 2 for alternative 
method. 

�9 Algorithm 2 exploits the inter-frame information and in most cases it 

is robust. The drawback is that errors in the previous frame will be 
propagated to the current frame. Therefore, we use Algorithm 2 only 
as a complement to Algorithm 1. 
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3.1.5 Block Matching Algorithm 

For the sake of robustness, in each frame, the derived rectangles in Sect. 
3 .1 .4  have to be verified. In the case of severe self-occlusion, the verifica- 
tion may fail. In this section we present a new matching algorithm that 
searches for the best rectangle using the block's whole color information. 
This algorithm can deal with the tracking error in Sect. 3 .1 .4  due to self- 
occlusion. But this algorithm's efficiency is low and errors can propagate. 
So this algorithm is only used when the algorithms in Sect. 3 .1.4 fail. 

Liu, et al. Ez? proposed a method that searches for a best matching block 
along a path that surrounds the position predicted by Kalman filter. How- 
ever, the efficiency of the method is very low. Considering the inter-frame 
information, we assume that the color blocks in two successive frames only 
deform slightly. In this section, we propose a method with higher efficien- 
cy that takes two steps: matching by histogram and matching by morphing 
blocks. 

Matching by Histogram 

The bounding rectangles of the color marker in the previous frame are se- 
lected and the histogram is constructed. The histogram has some charac- 
teristics (see Fig. 3.6).. (1)I t  has three peaks, with one major peak and 
two minor peaks; (2) The three peaks imply the marker, the clothes and 
the background, respectively. 

marker clothes background Lightness 

Fig. 3.6 Histogram of the bounding rectangle 

Let (P1, Pz, Pa) denote the three peaks on the histogram of frame N 
and let (PI' ,  Pz ~, Pa ~) denote the three peaks on the histogram of frame 
N - - l ,  then the best block matching can be found by the following equa- 
tions. 

Si=(a �9 ] X ( P i ) - - X ( P i ' ) l + p "  IY(Pi)--Y(P~')])  (3-19) 

S =  ~ Wi . Si (3-20) 
i = 1 , 2 , 3  

where X(P)  means the X coordinate (i. e. color value) of point P ,  and 
Y(P)  means the Y coordinate of point P. a,/3, W~ are weights. The value 
S in equation (3-20) represents the block matching degree between the two 
frames. In this way, we can get a rough position at which the histogram is 
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most similar to that of the last frame. 

Matching by Morphing Blocks 

Based on the matching by histogram, now we use matching of morphing 
blocks to get the accurate shape of the color markers [1]. In this way, the 
matching complexity is reduced to/W (histogram calculation) -+- K (matc- 
hing by morphing blocks). 

3 . 2  3D Recovery of Human Motion Data 

This section deals with recovering 3D human motion information from 2D 
tracking results. Resear~:hers have proposed different approaches for 3D 
recovery. In [-11], a constraint-based triangle method was used for recove- 
ring 3D data. O'Rourke and Badler [12] described a system that can analyze 
human motion in image sequences. Chen and Lee [la] proposed to exploit the 
global smoothing assumption to solve the ambiguity in recovering 3D data. 

In this section, an expanding model is proposed. First, the 3D posi- 
tions of joints are determined by expanding from a starting point. Then, 
3D information is recovered. Compared to other algorithms, our method 
gets continuous and smooth starting point by optimization in the searching 
space and uses the assumption of global smoothness to effectively solve the 
ambiguity problem. 

3 .2 .1  Two-step Calibration 

In perspective projection, each point Pw (Xw,Yw, Zw) in the world coordi- 
nate frame is transformed to a point P(u, v) on the projection plane by e- 
quations (3-21) and (3-22): 

[ X~ 
Y~ 
Z~ 

=R 
Xw 
Yw 
Zw 

--T (3-21) 

( "Xc f ' Y c )  
( u , v ) =  f2:  ' '2: (3-22) 

where R is a rotation matrix, T is a translation matrix and f is the focal 
length. The unknown variables, R, T and f ,  can be derived given some 
3D points and the corresponding 2D points. When the tracking result is a- 
vailable, the 2D projections of features are known and the 3D position in 
the world coordinate frame can be arbitrarily designated by the system. As 
long as the proportions between the features are consistent to the reality, 
we can always find the location and orientation of camera in the world co- 
ordinate frame (i. e. determine R, T and f )  which can make the system- 
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designated 3D points and the 2D positions on the image converge. Below is 
the detailed procedure. 
Step 1 The first step is to solve a linear equation combination using least 

square method and find external parameters. Since R ( r l ,  r2, "", 
rg),  T ( T ~ ,  Ty,  T~) and f have 12 DOFs, which is larger than the 
number of point pairs that can be provided, intermediate variables 

-1 T - 1 T ~ ,  J E l l ,  6] From equa- have to be introduced: T y ri ,  y �9 

tions (3-21) and (3-22) it can be shown that the intermediate vari- 
ables must satisfy the following equation: 

[Yaixwi , YdiY wi ' Y d i Z w i  ' Y a i  , - - X d i X w i ,  - - X a i y  wi, --XdiZwi ] ~ 

--1 T ;1 T - l r  T -1Tx , T - l r  T -1 T -lr6 IT ___Xd i [ T y  r l ,  r 2 ,  y 3 ,  y y 4 ,  y t ' 5 ,  y 

(3-23) 

Step 2 

where (Xwi ,ywi, Zw/) is the world coordinate of point i and (Xdi, 
Yai) is the corresponding point on the projection plane. If we have 
more than 7 point pairs, then the 7 intermediate variables can be 
determined by solving this equation combination. After that, we 
can determine ( r l ,  r2, "" ,  r9, Tx ,  Ty)  by using the orthogonal prop- 
erty of R. If we constrain the points to lie on the same plane and 
let Zwi--0, then the 3rd and 7th components of the above equation 
are zero and a minimum of 5 point pairs is sufficient to solve the e- 
quation combination. Besides, in the case of point pairs lying on 
the same plane, matrix R is more suitable for orthogonality. In 
practice, the common plane method is adopted in our system. 
T~ and f can be calculated by the following equation: 

( f ) - - w i d y Y i  (3-24) (Yi , - - d y Y i )  T~ 

where dy is the physical size of each pixel along y direction, 

Y i  --- r4 ~ Xwi  -~-r5 ~ Y wi - ~  t'6 ~ Zwi + Ty 

wi = r7 �9 Xw~ + r8 �9 y win u r9 �9 Zwi 
In practice, we select the chest, abdomen, left shoulder, right 
shoulder, left hip and right hip as the point pairs. (Xai, Yai) o{ 
each point is derived from tracking, and corresponding (Xwi,yw~, 
z~) can be designated to any world coordinate as long as the pro- 
portions between the points are consistent to the reality. Because 
the camera is fixed during the clip, the camera calibration has to 
be conducted only in the first frame and the calibration is used for 
the entire clip. Therefore, we can constrain the subject to be in 
the idle pose at the beginning of the clip and make the six points 
on the same plane. Our method only requires solving two small- 
scaled linear equation combinations for all parameters R, T and f .  
Compared with other non-linear calibration methods, our method 
has the advantages of high efficiency and robustness. 
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3 . 2 . 2  S e l e c t i o n  o f  S tar t  P o i n t s  

After camera calibration, the next issue is how to get the 3D coordinates of 
joints from the constraint of perspective projection. 

Since the triangle composed of chest, left shoulder and right shoulder 
best satisfies the non-deformation property of rigid movements and they 
are rarely occluded, we use this triangle as the starting points. Fig. 3.7 
demonstrates the motion information associated with this triangle (for bet- 
ter comparison, the data are translated and scaled). In the real capture, 
the subject approaches the camera with constant speed and the Z coordi- 
nate should be an increasing and smooth curve. The figure also shows the 
Z coordinate determined by solving the linear equation combination. It can 
be seen that the results are not stable and cannot reflect the real human 
motion. Considering that the starting triangle represents the global motion 
trends and does not abruptly change, we want to get useful information 
from the smoothed and filtered 2D tracking results and use this informa- 
tion to derive the Z coordinate in the 3D space. The star curve in Fig. 3.7 
shows the total length of the starting triangle and the circle curve shows 
the speed centroid of the starting triangle along the Z direction. For most 
motions, the variation of the depth information of the starting triangle is 
highly related to the total length of the triangle on the projection plane. 
When the subject is approaching the camera, the human ' s  projection gets 
larger and the total length of the starting triangle increases, and vice ver- 
sa. The star line in Fig. 3.7 shows this trend. Besides, we also consider 
the speed of the starting tr iangle 's  centroid (the bottommost line in Fig. 
3.7) .  Based on the above analysis, we can divide the entire clip into seg- 
ments, making the variation of depth of the starting triangle continuous in 
each segment. And then we can define a searching space and calculate the 
unknown parameter Z~ using the continuity property of motions and the non-de- 
formation property of rigidity. The procedure is detailed in the following. 
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Fig. 3.7 The motion curves 
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Determining t.he Searching Space 

Let the Z coordinates of the starting triangles of the nth frame be (Z11 , 

Zz ' ,  Z3 ') and the speed of Z coordinate be (VI ,Vz ,V3), then we can define 
the searching space for the (n n u 1) th frame to be (ZI '  -- aV1, ZI '  n u#Vx ). 
Because the variation of the starting triangle is gradual during the clip, we 
can constrain the coordinates of Zz and Z3 using: 

Z2 ~ (0" Zl " K21,  19"" Zx " K z x )  ( 3 - 2 5 )  

Z3 E (0" Z, �9 K3,, a" Z, �9 K31 ) (3-26) 

where K z l - - Z z ' / Z ,  z , K31 = Z 3 ' / Z , ' .  

Determining the  Optimization Cri ter ion 

Above all, it is an important criterion that the length of each edge of the 
starting triangle should be constant (SL). Then,  the motion '  s continuity 
is also considered, quantified by the calculation of acceleration (Sv) .  Sp 
stands for the difference between the normal vectors of the two frames. Fi- 
nally, the optimal location can be derived by r  

S = r  �9 SL nLry �9 Sv-Jr-7 �9 S,, (3-27) 

Fig. 3 .8  shows the Z coordinate derived by our method. The experi- 
ment shows that the result of our method is significantly better than the 
method of solving non-linear equation combination. But, in our method, 
several parameters ~, #, O, a are involved and their values can have a sig- 
nificant impact on the result. Therefore, we provide a user-friend interface 
{or the user to interactively set the parameters. For example, for the 
walking motion, the motion along Z coordinate can be described by 
straight line with constant speed. Therefore, a is set to zero and/2 is set to 
a value larger than 1. For jumping motion, the normal direction of the 
starting triangle has a constant orientation and so the corresponding 0 and a 
are set to values near to 1. 
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Fig. 3.8 The motion curves obtained by our method 
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3.2.3 Solving for Other Joints 

We've  got the 3D coordinate of the starting triangle. And now the task is 
to expand from the starting triangle and get the 3D coordinates of other 
joints. It is known that in the perspective projection one point on the pro- 
jection plane corresponds to a line in the 3D coordinate frame. In order to 
determine the real 3D position on the line, prior knowledge about the skel- 
eton length or human model must be exploited. From an adjacent point 
whose 3D coordinate is known, we can search the line for a point that can 
make the distance between the two points in the 3D space the same as the 
real length on the human skeleton model. However,  it can be seen in Fig. 
3.9 that actually two points P1 and Pz both satisfy this criterion. This am- 
biguity is caused by the illness of the problem of recovering 3D information 
from 2D data and has to be eliminated by prior knowledge. 

The method presented above first gets the set of all positions and finally 
uses an object function based on global motion smoothing assumption to 
select a single pose. This assumption ignores the rnotion's complexity and 
cannot guarantee to solve the ambiguity problem. Therefore, we try to an- 
alyze the features of the 2D motion. We find the frames with abrupt chan- 
ges and divide the entire clip into segments so that the smoothing assump- 
tion can be bettei" satisfied within each segment. Fig. 3.10 shows a clip of 
jumping motion with 33 frames. Using simple filter techniques, six zero- 
crossings can be identified ( the  7th, 9th, 14th, 17th, 24th and 26th 
frames. By observing the original video clip, it can be discovered that 
these zero-crossings are highly consistent to the real abrupt change points 
in the motion. Based on these zero-crossings, the entire clip can be divided into 
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Fig. 3.9 The expanding method 
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Fig. 3.10 Hand motion curves of 2D image 

independent segments. For each sub-segment (M i , N s) without abrupt chan- 
ges, the ambiguity problem can be solved by the followingprocedure. 
Step 1 For each joints, two candidate positions satisfy the perspective 

projection. Since there are three points in the starting triangle, 
the final data structure derived should be 3 X ( N - - M )  independ- 
ent expanding trees. 

Step 2 Some unreasonable branches are pruned using prior knowledge. 
For example, in the camera coordinate frame, thighs,  knees and 
ankles satisfy a constraint that the knee is always in front of the 
other two. In this way, some obviously unreasonable branches 
can be pruned. Besides, the interactive interface allows the user 
to define constraints. For some motions with strong regularities 
(e. g. walking, jumping, e tc) ,  typically a lot of constraints can 
be exploited. 

Step 3 For those joints whose ambiguity cannot be solved by constraints,  
we use the motion continuity with the segments to solve the ambi- 
guity. Now we raise a simplified example considering the expan- 
ding tree starting from the left shoulder which consists of left el- 
bow and left wrist as two child joints and only one DOF is considered. 
We define a smoothing criterion function S for frames i--  1, i and i-l- 1 : 

S(i-- l  ,i,i+l)=~elbow(i--l , i , i+l)+~wr~,(i--1, / , /+l)  (3-28) 

where N is the angular acceleration within the three frames. Based 
on the above equation, we can define: 

~ ( 1 , 2 , . . . , N ) = S ( 1 , 2 , 3 ) + S ( 2 , 3 , 4 ) + . . . +  

S(N- -2 ,N- -1 ,N)  (3-29) 
measures the smoothing degree within N frames. For each 

frame, we introduce a transfer graph (Fig. 3.11 is such a transfer 
graph when the segment length is 5) consisting of a starting node 
S and end node E. Thus ,  the optimization of searching for best 
trajectory is converted to the shortest path problem and the corn- 
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putation complexity is greatly reduced. 
Recovering 3D motion from 2D data is a challenging problem. 

Our method exploits the global motion smoothing assumption to 
get a best trajectory for human body joints. Compared to methods 
considering only a single frame or two successive frames, our 
method is more suitable to the intrinsic continuity and smoothness 
properties of human motion. Besides, we find abrupt change 
points in the 2D data and divide the entire clip into segments. This 
strategy makes the smoothing assumption more realistic and sig- 
nificantly reduces the computational complexity. There are also 
some limitations of our method. First, the pruning of unreasona- 
ble branches in Step 2 typically relies on the prior knowledge, and 
for complex motions, reasonable branches might be pruned. Sec- 
ond, if a joint abruptly changes in two successive frames and the 
algorithm misjudges, the algorithm based on global consideration 
can make this misjudgment lead to errors for the entire decision. 

I i ,&i2j I I i ,&i3j I i3,&i4j I I I 

Fig. 3.11 Transfer graph 

3 . 3  Case Studies: VBHAS V2.0  

We implement a system called Video-based Human Animation System 
(VBHAS V2.0) based on the algorithm introduced above. The input of 
the system is a video clip taken in the lab containing a person wearing tight 
clothing and the output is the 3D coordinate sequence of each joint. 

3 .3 .1  Results of Human Motion Tracking 

We captured a video of walking at a constant speed (containing 45 frames) 
for experiment. Fig. 3. 12 shows the tracking results for the 1st, 13rd, 
20th, 27th, 32nd and 42nd frames from left to right. The rectangles and 
dots show the tracked color markers. It can be seen that in the case with- 
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Fig. 3.12 The tracking result of human motion 

out self-occlusion, our algorithm can always get the correct position. In 
the case of partial occlusion (e. g. the knees in the 20th, 27th frames),  the 
block matching algorithm introduced into our method can still get the cor- 
rect tracking. In the 27th frame, the right ankle is completely occluded 
and the tracking of this joint is lost in that frame. However,  in the subse- 
quent frames, as the occlusion fades off, the system regains the correct 
tracking of that joint, indicating that the position in the 27th frame can be 
calculated by interpolation. 

3 . 3 . 2  Results of Human Motion 3D Reconstruction 

After joint tracking, VBHAS V2. 0 can recover the 3D human motion. 
The recovered 3D data are then sent to Poser 4 for animation. Fig. 3. 13 
shows the result, in which the left columns are the captured video frames 
and the right columns are the animated motion. It can be seen that the sys- 
tem can capture the 3D human motion and retarget it to an animated mod- 
el. However,  only 14 color markers are used on the tight clothing, so 
some subtleties in the motion (e. g. motion Of the hands and feet) will be 
lost. And this is one of our future works. 

We summarize two characteristics of our tracking and reconstruction 
method. First,  the results are very robust and accurate. Second, the in- 
corporation of Kalman filter and block matching algorithms enables this 
system to deal with self-occlusion partially. Although this method poses 
some limitations on the model ' s  clothing and capturing background, it is 
very useful in applications such as indoor motion analysis and animation 
producing. Besides, this method approaches different joints independently 
and stands a chance of parallelism. 

Our approach which uses only one camera has the advantages of low 
cost and simple hardware over other methods using multiple cameras. In 
addition, it has the potential of exploiting the abundance of existing video 
clips in movies or other media. The limitation is its dependence on the pri- 
or knowledge, which prohibits VBHAS V2.0 from reconstructing unlimit- 
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Fig. 3.13 3D reconstruction and retargeting of the motion data 

ed human motion, but does not affect its use in applications where prior 
knowledge of the motion is accessible. 
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4 

Two-camera-based Human Motion Capture 

In order to extract complex human motion precisely, multiple cameras are 
often used to capture the video sequences, then tracking and reconstruc- 
tion of human motion can be achieved by virtue of the multi-view video se- 
quences El?. The self-occlusion problem that occurred during tracking can 
also be solved with the multi-view pattern. Multiple views mean that the 
same scene is captured with the same sampling rate from different view- 
points. According to the principle of vision, multiple corresponding image 
feature points are competent for reconstructing 3D coordinates of feature 
points accurately. Therefore, compared with monocular video sequence, 
3D reconstruction is easier under multi-viewpoints. However, difficulties 
of feature correspondence and self-occlusion also exist in the tracking of 
multi-view video sequences. Especially, the automatic corresponding of 
multiple views is still a challenging issue. In this chapter, we intend to 
give readers more insight into the two-camera-based human motion capture 
as well as the VBHAS V3.0 (Video-based Human Animation). 

VBHAS V3.0 uses two cameras to capture the video sequence. First, 
we introduce the image pre-processing and image synchronization. Then, 
the automatic tracking of human features is discussed in Sect. 4.2. In Sect. 
4 .3,  we discuss the 3D motion reconstruction. And Sect. 4.4 will give a 
demonstration of VBHAS V3.0. 

4.1  Human Model 

Frequently used human models include stick model, silhouette model and 
volume model. Though the motion feature extraction is easier when sil- 
houette model and volume model are used, the computational complexity 
of feature correspondence is higher in these cases~ on the other hand, if 
stick model is used, the feature extraction is more difficult. Therefore, we 
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need to balance between model complexity and the computational complex- 
ity of {eature correspondence. In VBHAS V3.0 ,  we propose to regard hu- 
man body as a set of rigid bodies connected by articulated joints and simpli- 
fy the human motion as the skeleton motion. As shown in Fig. 4. 1, the 
human model is composed of 16 joints as well as the rigid bodies connect- 
ing the joints [zl. To capture the motion information, we develop a novel 
kind of maillot (Fig. 4 .2)  according to the proposed human model. Each 
joint is decorated with color block in a specific kind of color. Usually, the 
color block is independent of each other, therefore we treat each color 
block as a single feature, and the human motion can be obtained by track- 
ing the color blocks and building the correspondence between features in 
different video frames. 

In two-camera-based human motion tracking, multiple techniques are a- 
dopted, including Kalman filter, epipolar line, attribute quantification, in- 
complete motion feature tracking and HMM based tracking. In the follow- 
ing sections, we will discuss these approaches in detail. 

Fig. 4.1 Color block based human motion model Fig. 4.2 Color block based maillot 

4 .2  Human Motion Feature Tracking 

4 . 2 . 1  Feature Tracking Algorithms Based on Kalman Filter and Epi- 
polar Constraint 

4.2.1.1 The Principle 

Only using single image {eature (color, texture, shape) is incompetent for 
motion tracking when salient motion or self-occlusion occurs, or high pre- 
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cision is needed. Other constraints should be incorporated to improve the 
efficiency and accuracy of motion tracking. According to video analysis, it 
is found that: (1) The movement of feature points in one frame is correla- 
ted to that in the adjacent frame, so Kalman filter contributes to reducing 
the search space and improving the efficiency and accuracy of motion track- 
ing; (2) In motion capture, the epipolar line obtained by multi-camera cal- 
ibration can be used to guide the feature tracking, thus reducing the error 
that occurs during tracking. 

Experiments show that: 
�9 Considering the attributes of feature points and its neighbors, the 

sub-block based tracking performs better than the point-based matc- 
hing; 

�9 Though the tracking algorithm executed in RGB space is adaptive to 

frames with variant lighting conditions, the error is evident to some 
joints with salient motion; 

�9 Gray scale value based tracking is more sensitive to lighting condi- 

tion, therefore, the tracking results are better when the difference in gray 
scale value between background scene and moving objects is large; 

�9 Kalman filter can improve the tracking result of motion feature evi- 

dently, however, if there exists serious error in previous frame, the 
tracking result of current frame degenerates greatly. This problem 
can be solved by setting a threshold for Kalman filter. 

Based on the discussion above, we propose a novel feature tracking al- 
gorithm. The basic workflow is. f i r s t ,  predict the position of feature point 
in next frame using Kalman filter; then, search for the seed point using 
sub-block based matching in RGB and gray scale space, and cluster the 
color blocks centering around the seed point; last, the center of color 
blocks is the tracking result. After obtaining the feature points in one 
frame, use the epipolar line to guide the tracking in the video captured by 
the other camera simultaneously. 

4.2.1.2 Tracking Algorithm 

According to the principle we just described, we develop our tracking algo- 
rithm as follows (C1 (i) denotes the ith frame captured by Camera 1, and 
Cz (i) denotes the ith frame captured by Camera 2). 
Step 1 Find the mark points in both videos, and synchronize the videos by 

use of the mark points. 
Step 2 To synchronized videos captured by two cameras, mark the joint 

feature points of human model manually on the first frame, initial- 
ize the speed and acceleration of 3D feature points as 0 (in order to 
deal with the self-occlusion), and set the initial speed of 2D fea- 
ture points to be 0 also. 



80 A Modern Approach to Intelligent Animation: Theory and Practice 

Step 3 

Step 4 

Predict the position and speed of 2D feature points in the ( i +  1)th 
frame using Kalman filter in the image coordinate system. 
Track the feature points in frame C1 (iq-1) according to the predic- 
tion as follows. 

(1) Search the matching points corresponding to the feature points in 
C~ (i) based on sub-block matching. The eight-neighbor search 
space centers around the predicted feature points in frame C~ ( i +  
1 ),  and the matching is performed in RGB and gray scale space re- 
spectively. 

(2) Let the matching point be the seed point, and cluster all the points 
in a bounding box (determined by the focal length) according to a 
specific threshold (determined by the average gray scale value of 
sub-block). 

(3) Solve for the centers of all the clusters, and the center points are 
actually the feature points in frame C~ ( i +  1). 

(4) Modify the state vectors according to the tracking results (2D and 
3D state vectors). 
Guide the tracking of the corresponding feature points in frame 

C2 (i-f-1) based on the epipolar constraint equation. 
(1) Track the feature points in frame C2 (i-f-l) using the method in 

Step 4, and solve for the candidate points. 
(2) If the distance between a candidate feature point and the epipolar 

line is larger than a specific threshold, remove this feature point 
from the candidate feature point set. 

(3) Search for the matching point corresponding to the seed point ac- 
cording to the search route determined by epipolar line. Let the 
matching points be the candidate feature points. 

(4) Compute the distance between candidate feature points and the 
epipolar line, and select the feature point with the shortest dis- 
tance as the tracking result. 

(5) If no points satisfying the conditions are found (due to occlusion), 
go to (6); 
Modify the state vectors, go to (3). 
If the search around the predicted points fails (due to self-occlu- 
sion), use Kalman filter under world coordinate system. In this 
case, we regard the 3D points as the tracking results, and regard 
the predicted image points as the 2D tracking results. When the 
self-occlusion disappears, modify the state vectors using the actual 
tracking results. 

Step 7 If tracking for next frame is needed, go to Step 3; else, the algo- 
rithm terminates. 

4.2.1.3 Search Route and Matching Criterion 

Same route is adopted when searching for the seed points and clustering the 

Step 5 

(6) 
Step 6 
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color blocks. The searching route starts from the predicted center point, and 
goes through the eight-neighbor space anticlockwise, see Fig. 4.3. 

Due to the relationship between gray scale value and environment con- 
dition, when it is dark, the gray scale value of foreground is similar to that 
of background. Therefore, we adopt RGB and gray scale value for matc- 
hing. When clustering the color block, we only use the gray scale value. 

matching point 

t start point for 
searching 

Fig. 4.3 The search route Fig. 4.4 The sub-block 

Search for the Seed Points 

When searching for the seed points corresponding to the feature points in 
the previous frame, we adopt a sub-block based method. The sub-block 
comprises of the feature point to be matched and its eight-neighbors, see 
Fig. 4.4. First, to a specific point p, we compute the sum of the square of 
the difference between p related sub-block and corresponding sub-block in 
the previous frame, in R, G, and B channels independently. 

2 2 

RedDiff  = ~ ~ ( p [ i ] [ j ] .  red--  Feature~[i][j]. red) 2 
i = 0  j = 0  

2 2 

GreenDi f f -- 2 2 (p[i][j]. green-- Feature~[i][j]. green) 2 
i = 0  j = 0  

2 2 

BlueDi f f -= ~ ~ ( p [ i ] [ j ] .  b l u e -  Featurem[i][j]. blue) 2 
i = 0  j = 0  

where p [ i ] [ j ]  ( i , j = 0 , 1 , 2 )  denotes each pixel in the p related sub-block, 
Featurem[i][j] ( i , j = 0 , 1 , 2 )  denotes each pixel inthe sub-block related to 
the mth feature point in the previous frame. 

The matching criterion can be described as following two formulas: 

min (RedDi f fnGreenDi f f n  BlueDi f f )  (4-1) 

I[ P. gray--MeanGraym I[ ~Deviation (4-2) 

Equation (4-1) means no point exists which has smaller R, G, and B val- 
ue. This is because in many cases, the R, G and B value of the point dif- 
fers greatly from that of the feature point, while the sum of square of the 
difference in R, G and B value is smaller. The matching point obtained in 
this way may be "false point" due to noises. Equation (4-2) indicates that 
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the deviation between gray scale value of the matching point and the aver- 
age value is below some threshold, which ensures the matching point is in 
the sub-block. When both equation (4-1) and (4-2) are satisfied, the point 
is the cluster center point. 

Cluster the Color Block Region 

The aim is to find the color block region, and the tracking result is the 
center of the color block region. In the previous section, we have found 
the start point of clustering. Because the gray scale value reflects the sta- 
tistical characteristics of a point ' s  R ,  G, B value, we only adopt gray scale 
value to cluster the color block region. The criterion for clustering color 
block is the same as equation (4-2). 

4.2.1.4 Kalman Filter for Feature Point Prediction 

In feature point tracking, the marks attached on the joints may be occluded 
by human motion, consequently accurate feature point tracking is not a- 
vailable. The problem can be solved by use of Kalman filter to predict the 
feature points. Under ideal condition, Kalman filter under world coordi- 
nate system reflects the actual motion of feature points, however, in prac- 
tice, considerable errors may occur when projecting the 3D feature points 
to 2D image plane because of the uncertainty in calibration. So, in our VB- 
HAS, Kalman filter under image coordinate system is used for predicting 
the feature point when no self-occlusion occurs, while if there exists self- 
occlusion, Kalman filter under world coordinate system is adopted. 

Kalman Filter under World Coordinate System 

Human motion can be regarded as a dynamic system. The motion style of 
joints in adjacent frames can be regarded as evenly accelerating. Cubic pol- 
ynomial can be used to describe the motion trajectory of point p along x (y 
or z) direction. Kalman filter is adopted for prediction in x ,  y or z direc- 
tion. Suppose S - - ( P i , V i , a i )  T is a state vector where Pi is the coordinate 
offset of p along x ,  y or z direction, V~ is the speed offset of p along x ,  y 
or z direction, and ai denotes the acceleration offset of p along x ,  y or z 
direction. The state equation can be described as. 

where 

S ( k + l )  -- F .  S ( k )  + G .  n ( k )  

F- -  1 T , G -  

O 1 L 1 

(4-3) 

and k - - 0 , 1 , 2 , . . "  means the number of each frame, T-- tk+l - - t k  is the time 
interval, n ( k )  describes the noise of acceleration along x,  y or z direction. 
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Suppose n ( k )  is Gaussian, with zero mean and covariance matrix Q. 
The feature point P = ( x , y , z )  T can be described as P = P ' + ~ / w h e r e  P' 

is the noiseless observation of joint feature point, P is the actual observa- 
tion, ~/is Gaussian with zero mean and covariance matrix R. Therefore, 
the observation equation is. 

X(k) = H .  S ( k )  + r l ( k )  (4-4) 

where H = [ 1 , 0 , 0 ]  is a 1X3 matrix. 

Kalman Filter under Image Coordinate Syss 

In feature tracking algorithm, if we project the point predicted by Kalman 
filter under world coordinate system to image plane, and select the projec- 
tion as the Seed point for tracking, the experimental result is not good. In 
terms of image feature point tracking, we use Kalman filter under image 
coordinate system for prediction. Due to the tiny time interval between ad- 
jacent frames, we suppose the corresponding feature points in adjacent 
frames move at even speed. However, the moving speed of feature points 
in arbitrary two frames is different and the speed can be constantly updated 
according to the tracking results. The state vector of the system can be de- 
scribed as [u (k ) ,  v ( k ) ,  a ( k ) ,  ~(k)]  T where u ( k )  and v ( k )  denote the co- 
ordinate offset along u and v direction in image coordinate system respec- 
tively, while a (k) and ~(k)  denote the speed offset of feature point along u 
and v direction. Thus, the state equation of the dynamic system is as follows. 

X ( k + l )  = F . X ( k )  + rl(k) (4-5) 

where ~(k) is Gaussian white noise with zero mean and covariance matrix Q. 
The observation equation listed below describes the relationship of 

noiseless tracking resu]~ts and practical ones. 

Z ( k ) = H  . X ( k )  + W ( k )  (4-6) 

where 

'I0: ~ ~ 1 0 H =  0 0 0 
F =  0 1 ' 1 0 0 ' 

0 0 

and T is the time interval between video frames, W ( k )  is Gaussian white 
noise with zero mean and covariance matrix R. 

State prediction and modification of dynamic system is similar to Kal- 
man filter of 3D feature points. 

4.2.1.5 Epipolar Constraint Guided Feature Tracking and Artifact Elimination 

In multi-camera tracking, the constraint between multiple views can be used to 
guide the feature tracking and eliminate the artifact of tracking results. 
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In camera calibration, the projection matrices of two cameras can be de- 
scribed as follows: 

ZC Ul =MIXp---(M11 ,ml )Xp (4-7) 

Zc, uz = Mz Xp = ( Mz~ , mz ) Xp (4- 8) 

where Zc, and Zc2 are the z coordinates of point p in the camera coordinate 

system, Xp is the homogeneous coordinate of p in the world coordinate 
system, Ul and uz are the homogeneous coordinates of p ' s  projections Pl 

and Pz on the image plane, M1 and Mz are the transformation matrices, 
Mll and Mzl are the left side 3 X 3 matrices of M1 and Mz, ml and mz are the 
right side 3X 1 vectors. Equations (4-7) and (4-8) thus can be converted to. 

m=mz --MzlM~lml (4-9) 

uT[m]~MzlMz ~llUl---0 (4-10) 

Equations (4-9) and (4-10) denote the epipolar constraints that Ul and uz 
should satisfy. When Ul is given, the equations are epipolar constraints re- 
lated to uz in the other image coordi- 
nate system. 

Based on the constraints, we use 
the tracking results in C1 (i) to guide 
the tracking in Cz ( i ) ,  and the search 
route is shown in Fig. 4.5. Epipolar 
constraints are used to judge the ac- 
curacy of tracking in C2 ( i) ,  the criteri- 
on is whether the distance between the 
tracked point and the epipolar line sur- 
passes a certain threshold. 

line 

Fig. 4. 5 Searching route guided by 
epipolar constraints 

4 . 2 . 2  Feature Tracking Based on Attribute Quantification 

4.2.2.1 The Principle 

In video-based motion capture, due to the salient human motion and self- 
occlusion of human movement, the variation of pixel brightness is very 
large, thus the pixel value based tracking algorithm lacks robustness E3~. 
Though the information of single pixel is limited, the information of each 
image feature remains abundant,  such as position, size and mass. In video 
sequence of high sampling rate, the position and size of features in adjacent 
frames are very similar, and the speed and acceleration of feature points 
are predictable. To the isolated feature, the brightness, size, position and 
speed can be used for feature correspondence in motion tracking; while to 
the features whose motion trajectory is discontinuous, the speed and posi- 
tion can be used to guide the feature correspondence. Therefore, when 
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multiple features exist in the scene, adaptively integrating the feature at- 
tributes can improve the robustness of human motion tracking. 

According to the above discussion, we propose a feature tracking algo- 
rithm based on feature attribute quantification. The workflow is. first, 
find the human features in image, extract the features as well as the fea- 
ture attributes and compute the matching factor between corresponding 
features in adjacent frames~ second, build the matching matrix for weigh- 
ted sum of each feature attribute according to the importance of each at- 
tribute during tracking~ last,  search for the optimized feature correspon- 
dence in matching matrix by greedy algorithm, thus construct the corre- 
spondence for the features in adjacent frames. 

4.2.2.2 Tracking Algorithm 

Step 1 Suppose self-occlusion does not occur in the first frame, track the 
feature joints in the first frame by model matching. 

Step 2 Track the frame i + l ,  compute the difference in brightness be- 
tween foreground image and background image according to a de- 
signed brightness threshold, segment each feature in the image. 

Step 3 Eliminate the noise contained in the feature block by use of "open- 
ing" operation. 

Step 4 For each feature block, compute the size, average brightness be- 
fore image processing and the position and speed of centroid after 
image processing by clustering algorithm. The size and brightness 
of feature block are extracted before the "opening" operation. 

Step 5 Compute the attribute matching matrix between each feature block 
in frame i+1  and the tracked feature block in frame i in terms of 
brightness, position, size and speed. 

Step 6 Select different weight s according to the feature attributes in frame 
i-l-1 and the relationship between feature blocks, compute the 

J 

weighted sum of attribute matching matrix. 
Step 7 Search the optimized feature correspondence in the weighted sum 

of attribute matching matrix. 
Step 8 Modify the data structure of features according to the feature cor- 

respondence. If the feature is isolated, update the position, size, 
brightness and speed of the feature, else update the position only. 

If tracking will continue, go to Step 2, else the algorithm is terminated. Step 9 

4.2.2.3 Feature Attribute Extraction 

Feature Segmentation 

Before the feature attribute extraction, the segmentation of features is nee- 
ded. Due to the invariant image background, we can compute the differ- 
ence in brightness between foreground and background first, and segment 
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each color block via a pre-designed threshold. Because of the similarity in 
color between maillot color block and background image, the segmented 
feature block may seem unreasonable. However, automatically setting the 
threshold is still an open issue, therefore wedefine a default threshold and 
provide an interface to allow the user to change the threshold during track- 
ing. 

We need to pre-process the segmented features to eliminate some arti- 
facts. The pre-process is in fact "open" operation O P E N ( X ) = D ( E ( X ) )  

which includes two steps, i. e. , "erosion" and "dilation". 
Definition 1 Erosion: Translate the structure element B to a,  we get 

Ba. If Ba is included in X, preserve point a ,  and all the points satisfying 
above conditions form the Erosion result. Formally described as: E ( X ) =  

{ a l Ba C X }  = X O B  
Definition 2 Dilation: Translate the structure element B to a,  we get 

Ba. If Ba hits X ,  preserve point a and all the points satisfying the above 
conditions form the Dilation result. Formally described as: E (X)  = { a I 
Ba '~ X}  = X @ B  

For the sake of simpleness, the same structure element is adopted in e- 
rosion and dilation, and the structure element is B =  { {0, O, O, 0}, {0, O, 
1, 0}, {0, 1, 1, 0}, {0, O, O, 0}}. 

The pre-processed features may still hold some non-color block region, 
so we use clustering algorithm and rapid bounding box algorithm to cluster 
the segmented image regions and get the features enclosed in the bounding 
box. If obvious difference between the size of clustered feature and that of 
color block occurs, remove the clustered feature. 

Feature At t r ibute Extraction 

The features in image sequence include centroid, speed, size and bright- 
ness which are characterized by: 

�9 The position variation of corresponding features in adjacent frames is 

tiny when the sampling rate is high (above 10 Hz);  

�9 The brightness variation of corresponding features in adjacent frames 

hardly changes when the motion of features is tiny; 

�9 Suppose the human motion is continuous, the speed and acceleration 

of features are predictable; 
�9 The size of a feature is invariant when it is not overlapped with other 

features and there is no continuous motion. 
We can build correspondence between the features in adjacent frames 

according to the characteristics of feature attributes. Therefore, in our ap- 
proach, we only extract the attributes such as the centroid position, 
speed, size and brightness. 
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4.2.2.4 Feature Correspondence 

The Quantification of Feature Matching Factor 

Currently, the multiple attributes based feature matching algorithm is 
qualitative, it is hard to integrate multiple attributes together to guide the 
feature matching. To integrate multiple features, we should quantify the 
matching between the features in adjacent frames as well as the contribu- 
tion of each attribute in feature matching. We build a feature attribute 
matching function and a feature attribute matching factor for each extrac- 
ted feature attribute. In the attribute matching function, we set  Tatt as a 
threshold to quantify the matching between the features in adjacent 
frames. If the difference between the attributes of features is above Tatt, 
the features are considered unmatched, otherwise, they can be matched to 
each other. The attribute matching factor can be inferred through the 
matching function, which denotes the matching degree of the features in 
adjacent frames. 

The position matching function of the features in adjacent frames can be 
described as: 

Dist(Pi ,P~+I ) ~ Tpositon (4-11.) 

where Dist(Pi, P~+I) denotes the position difference between the j th  fea- 

ture in the ith frame and the kth feature in the ( i +  1)th frame, Too~ition de- 
notes the upper limit of the threshold about position difference, i. e . ,  
when the position difference is below Tposition, the two features are consid- 
ered matched. 

According to equation (4-11), we define the matching factor of feature 
position as �9 

D i s t ( P i  , I~int- 1 ) 
Cposition = 1 --  Tpo~ition ( 4 - 1 2 )  

When Cposition ~-1, the j th  feature in the ith frame is matched with the kth 

feature in the (i + 1) th frame in position; when 0% Cposit~on % 1, the corre- 
sponding two features are nearly matched. 

The brightness matching function of the features in adjacent frames can 
be defined as: 

11 Bi II Tbright (4-13) 

where II Bi--B~+I II denotes the brightness difference between the j th fea- 

ture in the ith frame and the kth feature in the (i-+-1)th frame, Tbright de- 
notes the upper limit of the threshold of brightness difference. Only when 
the brightness difference is below Tbright, the two features are possible to 
match with each other. 
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According to equation (4-13), we define the matching factor of feature 
brightness as: 

Cbright---1-- I Bi--B~-I-1 II (4-14) 
Zbright 

When Cbright : 1, the j th feature in the ith frame is matched with the kth 

feature in the ( i + l ) t h  frame in brightness; when 0<Cbright%l, the corre- 
sponding two features are nearly matched. 

The speed matching function of the features in adjacent frames can be de- 
scribed as: 

[1 Vi--V~+I II ~Tvelocity (4-15) 

where 11 Vi--~/r~+l 1[ denotes the speed difference between the j th feature 
in the ith frame and the kth feature in the ( i +  1)th frame, Vi can be ob- 
tained according to the position variation of corresponding features in adja- 
cent frames and the time interval, Tve~oc~ry denotes the upper limit of the 
threshold of speed difference. Only when the speed difference is below 
Zvelocity, the two features are matched with each other. 

According to equation (4-15), we define the matching factor of feature 
speed as: 

Cvelocity--1--II v i - w ~ + l  II (4-16) 
Tvelocity 

When Cvelocity---1, the j th feature in the ith frame is matched with the kth 
feature in the (i + 1) th frame in speed; when 0 ~ Cvelocity ~ 1, the corre- 
sponding two features are nearly matched. 

The size matching function of the features in adjacent frames can be de- 
scribed as: 

I[ Si--S~+I II ~Ts~ze (4-17) k max ($ i ,  $i+1 ) 

where II si--S +l II denotes the size difference between the j th feature in 

the ith frame and the kth feature in the (i-4-1)th frame, T~i,e denotes the 
upper limit of the threshold of size difference. Only when the size differ- 
ence is below T~i,e, the two features are matched with each other. 

According to equation (4-17), we define the matching factor of feature 
size as : 

k / 
c~,,.o = 1 -  II s i - s , + ~  I --7--~ - Tsi,e (4-18) 

max (Si, Si+ 1 ) 

When Csize = 1, the j th  feature in the ith frame is matched with the kth fea- 

ture in the (i + 1) th frame in size; when 0 ~ Csi,e ~ 1, the corresponding 
two features are nearly matched. 
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Feature Matchin8 Matrix 

Given the tracking results of the nth frame, feature matching aims to find 
the feature points in the (n + 1)th frame which are corresponding to the 
feature points in the nth frame. In feature matching, only the features 
with the maximal weighted sum of the attribute matching factor are con- 
sidered matched. In order to achieve the optimized matching, we first con- 
struct the feature matching matrix for 16 feature points extracted from the 
previous frame which denotes the matching degree of these features to the 
features in the subsequent frame. 

Arbitrary entry S u in the matrix describes the matching degree of the 
ith feature in frame n and the j th  feature in frame n +  1 where S u ~ 0 .  
When S u = 1, the ith feature in frame n is matched with the j th  feature in 
frame n + l ;  when Sit = + c ~ ,  the ith feature in frame n is not matched 
with the j th  feature in frame n +  1. 

�9 When self-occlusion doesn ' t  occur, brightness is the prominent fea- 

ture in feature matching, and we realize this by increasing the weight 
factor. When self-occlusion or discontinuous motion occurs, the 
brightness is less important to feature matching, thus the weight fac- 
tor drops. 

�9 When few motion features exist in the scene or the motion features do 

not overlap with each other, the size of the feature plays an important 
role in feature matching, otherwise, the weight factor of size should 
be decreased. 

�9 When the video sampling rate is high, the position variation of the 

features in adjacent frames is very small, thus the features in two 
frames with similar positions are more probable to be the matching 
features. When self-occlusion occurs, we can improve the position 
matching factor to achieve the matching. 

�9 In the high-sampling rate video, suppose the human motion is contin- 

uous, then the positions of corresponding features in adjacent frames 
are predictable. Therefore, when self-occlusion occurs, the problem 
can be solved by increasing the speed matching factor. 

Obtain the attribute matching matrix according to the above methods, 
and compute the weighted sum of these attribute matching matrices as. 

M--W~i~eM~i,.e +Wbright Mbright +WvelocityMvelocity -qLWpositionMposition (4-19) 

Each entry in the matrix is. 

Corr = ( C,'Wi;, 
i = 0  i = 0  

where Wi is the weighted factor of the ith attribute matching matrix which 
denotes the contribution of this attribute to feature matching. The weight 
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matrix can be adaptively determined according to whether self-occlusion or 
discontinuous motion occurs. 

Self-occlusion of FeatuFe 

We introduce "feature interference" to better describe whether sel{-occlu- 
sion or incontinuous motion occurs. The bounding box of a feature can be 
described as a 3-tuple: h =  {height ,  w i d t h ,  center}. The feature interfer- 
ence, which can be described by the bounding box, means the relative po- 
sition between features. For example, the interference of feature a against 
feature b along x direction can be described as: 

a. width4- b. width 
Interx ( a, b) = 

a. center, x- -b .  center, x 

If II Inter~(a,b)II  > 2  or II Inter,(a,b)II > 2 ,  self-occlusion or discontin- 
ous motion occurs between feature a and b. Thus we should adjust the 
weights of different attribute matching factors in feature correspondence. 

Compulsive OonstraJnts in Feature Matching 

When the difference of the features in adjacent frames is large, the two 
features cannot be matched furthermore,  and the position constraints be- 
tween the joints in the human model will be damaged. Therefore,  if the at- 
tributes of the features in adjacent frames differ greatly from each other,  
compulsive constraints should be adopted to ensure that the features do not 
match with each other. The compulsive constraints include: 

�9 The speed v~ and v, can be obtained according to the feature positions 

in adjacent frames. If the speed surpasses a certain threshold, the fea- 
ture points are not matched. 

�9 If the difference in brightness of the features in adjacent frames sur- 

passes the threshold, the features are not matched. We set different 
thresholds according to the level of brightness. 

�9 If the difference of arbitrary two features in adjacent frames breaks 

the position constraints between joints of human model, the two fea- 
ture points are not matched. The position constraints are determined 
in the first frame. 

�9 If the difference in size of the features in adjacent frames surpasses 

the threshold, the two feature points are not matched. The size 
threshold is equal to the size of the features in the first frame. 

If arbitrary two features in adjacent frames satisfy the above compulsive 
constraints, the corresponding attribute matching factor will be assigned 
the maximal value -$-o0. In feature correspondence, if there is any entry in 
the matching matrix equals -4-c~, the corresponding two features are not 
matched. 
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Compute the Maximal Matching 

According to equation (4-19), the feature matching matrix of the weighted 
sum of multiple attributes can be computed as: 

M . ~ _  

I AI,1 A1,2 "'" A1,.-1 AI,. ] 
A~,I A2,2 ." ... "'" A2,.-1 ." A2,. . 

]Am'-l,1 Am-l,2 ~176176 Am-l,n-1 nm'-ln 
h Am,1 Am,2 "~ Am,.-1 Am,: 

where m and n denote the number of features in adjacent frames. 
Then, the corresponding features in adjacent frames are computed ac- 

cording to the feature matching matrix. Due to possible self-occlusion or 
discontinuous motion trajectory, the number of tracked features (n) would 
not be larger than the number of features in the previous frame (m) .  
Therefore, the feature correspondence should satisfy the constraints as be- 
low: in matrix M, there exists at least one entry in each column which is 
the corresponding feature in adjacent frames, while in each row, there is 
only one entry which is the corresponding feature in adjacent frames. The 
optimal criterion of feature matching is that the sum of matching factors of 
m corresponding features reaches the maximum, i. e. , search for all the 
features ( i ,  j )  which satisfy the constrains for feature correspondence, 
and let equation (4-20) be true. 

max (sum = 2 A o )  (j = 1 , 2 , ' - ' , n )  (4-20) 
i = 1  

Obviously, the resolution can be obtained by enumeration method from 
the feature matching matrix, however, the computational complexity is as 
high as O(mn) 4 and this cannot satisfy the need of real-time tracking. 
Here we adopt a greedy algorithm to solve for the optimal matching feature 
based on the feature matching matrix. 
Step 1 Initialize R--jZY, FEm-]--O (R denotes the optimal feature matc- 

hing, while F denotes whether the features are matched to each 
other). 

Step 2 Find the entry with the largest value Ao in matrix M, enclose (i ,  
j ,  Ao ) in R, Mi = M ,  F E i -  1-] = 1. 

(1) Remove the ith row and j th  column of Mi, obtain Mo. Find the 
largest entry A in Mo and enclose (x ,  y,  A)  in R, i = x ,  j = y ,  
M~=Mo, F [ - i - - 1 ] = I  ; 

(2) I f  Rank ( /VIi)~l ,  go to Step 2; 
(3) To arbitrary k which satisfies F[-k]=0,  search for the largest entry A 

in the ( k +  1)th row of M which is not included in R, the position of 
this entry is ( k + l ,  l) ,  enclose ( k + l ,  l, A) inR,  F [ i - - 1 ] = 1 ;  
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(4) 

4.2 .3  

If there exists k which satisfies F [ k ] = 0 ,  go to Step 5, otherwise 
algorithm terminates. 

Incomplete Motion Feature Tracking Algorithm in Video 
Sequences 

4.2.3.1 Basic Idea 

In image-based feature tracking, maximizing the cross correlation between 
two images and tracking features using optical flow E47 are two main kinds 
of approaches. Under the assumption that the feature motion is relatively 
constrained and the brightness is approximately equal for the same feature 
all the time, optical flow approach matches features according to the crite- 
rion of invariable brightness, which is unsuitable for tracking motions that 
vary greatly Es? or features with discontinuous motion trajectory. On the 
other hand, attribute-based tracking algorithms firstly extract the attrib- 
utes of features such as point, line, contour, and then match features be- 
tween consecutive images by region-based or attribute-based matching ap- 
proach [6,71, finally the motion trajectory of corresponding features will be 
built. The difficulty of this attribute-based feature tracking approach lies 
in extracting feature attributes and quantifying matching function. From 
the above analysis, we consider that to track incomplete motion features, a 
new approach must be studied deeply. And we introduce our solution to 
this problem in this section. 

4.2.3.2 Tracking Algorithm 

According to the above analysis, the tracking algorithm can be described 
by the diagram in Fig. 4.6. 
Step 1 Select features to be tracked in the first frame. Assuming that no 

incomplete motion feature exists in the first frame, we match hu- 
man model with the first frame to obtain joint features and calcu- 
late their sizes. 

Step 2 Predict the locations of features in frame i + l .  When the sampling 
rate of video is high enough (above 10 Hz) ,  we can assume that 
the human movement is continuous. According to the position and 
movement vector of features in frame i, the position of each fea- 
ture in frame i + l  can be predicted. The model predicting the po- 
sition of feature can be described as. 

Pi+ l (..Tg , y )  = WpositionPi ( x , y )  --4- ( 1- -  Wposition ) ( V i T  -+-Pi ( x , y )  ) 

where Pi (x ,y)  is the position vector of feature in frame i, V~ is 
the speed vector of feature in frame i, T is the time interval between 
adjacent frames, and W0o~i~ion is the weight factor of position. 

Based on the position and size of the tracked features in frame i 
and the position of the predicted features in frame i +  1, a search 
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Image sequences 
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Fig. 4.6 The diagram of tracking algorithm 

window W for corresponding features in frame i +  1 is built. And 
the pixels with the same attributes are encircled in one window. 

Step 3 Calculate the interference degree. To make clear whether there 
exists self-occlusion or discontinuous motion trajectory of fea- 
tures, the concept of "interference degree" is introduced. Define 
the bounding box of a feature as a tri-element set h = {height, 
width ,  center}, where height, width ,  and center are the height, 
width, and center point of the bounding box respectively. So- 
called interference degree expressed as bounding box is defined to 
describe the relation between any two features. For example, the 
interference degree Interx (a, b) in the x direction between feature 
a and b can be defined as. 

Interx ( a, b) = a. width--l- b. width 
a. center, x- -b .  center, x 

S t e p  4 

If [Interx (a,b) [[ ~ 2  or II Intery(a,b) [I ~ 2 ,  it means that feature 
a interfers with feature b. 
Cluster those features with the same attributes. Clustering algo- 
rithm is used to calculate the feature size and feature region. 
Firstly, in search window W resulted from Step 2,-we utilize sub- 
block based model matching approach to search for clustering seed 
point. The color and brightness of seed are approximate to those 
of corresponding feature in frame i. Then self-adaptive clustering 
is used to calculate the feature size according to gradient informa- 
tion, and calculate the gravity center of the clustered region. 

We use sub-block based matching approach to search for the 
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Step 5 

seed in W, where the sub-block of point p is composed of p and its 
eight-neighbor points. Firstly, we compute. 

2 2 

RedDi f f -- E E ( p [ i ] [ j ]  r e d -  Featurem[i][j].  r e d )  2 
i=O j=O 

~een '~H = ~ ~ (Pr~-1E;-1. green-- Fea~,e~E~E;~. green) '~ 
i=o j=o 

BlueDi f f = ~ ~ (p[i][j]. b l u e -  Featurem[i-][j-]. blue) 2 

6"1 

i=0  j = 0  

where p[-i-] [-j ] ( i ,  j -- 0 , 1 , 2 )  denotes the pixels enclosed in the 
sub-block of point p,  while Featurem[i][j] (i, j = 0 , 1 , 2 )  denotes 
the pixels enclosed in the sub-block of point m in the ith frame. 

Then, we search for the seed point which is closest to feature 
point m in the ith frame. 

min (F(R ,G,B) ) =Wr �9 RedDi f f +wg �9 GreenDi f f + 
Wb " BlueDi f f (4- 21) 

II Ip ( i+l ) - - I~( i )  [I ~ D  (4-22) 

where 1~(i) denotes the brightness of feature point m in the ith 
frame, while D is the threshold of brightness. We use adaptive- 
clustering algorithm to calculate the size of feature and the center 
of clusters. 
Classify features. According to the interference degree of the esti- 
mated feature and the size of clustered region calculated above, we 
classify the features to be tracked as solitary features, overlapped 
features, partially occluded features and disappeared features. O- 
verlapped features mean that one feature overlaps with another 
feature in the same frame. Partially occluded features are those oc- 
cluded partially by other parts of human configuration or ambient 
scenes. Disappeared features are disappearing from current view. 

(1) If II Inter~ (a, b) II < Z N II Intery (a, b) I] < 2 N II A - -  A0 ]] < 
0.15A0 holds, the feature is solitary feature; 

(2) If II Inter~ (a, b) II < 2 N II Intery (a ,  b) II < 2 N II A - -  A0 II >~ 
0.15A0 holds, the feature is partially occluded feature; 

(3) If [I Inter~(a,b)I[ >~2U II Intery(a,b)II >~2 holds, the feature is 
overlapped feature; 

(4) If I[ AI] ( 0 . 1 A 0  holds, the feature is disappeared feature. 
Feature tracking. Select different tracking algorithms according to 
the classification results of features. 

(1) For solitary features, Kalman filter and the feature attribute 
matching approach can be used, and the tracking result is the cen- 
ter of the clusters; 

(2) For overlapped features, the combined templates can be used; 

Step 6 
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(3) For partial occluded features, the clustering algorithm and the 
feature extension algorithm can be used; 

(4) For disappeared features, the 2D image prediction and the 3D 
space matching approach can be used. 

Step 7 Test tracking results. Cross-correlation testing and 3D model tes- 
ting are used to test the tracking results. If passes the test algo- 
rithm, one feature will be considered as qualified feature. If the 
feature is unqualified, go to Step 6 and adjust the tracking results 
until pass the test. 

Step 8 If continue tracking, go to Step 2; or else exit. 

4.2.3.3 Incomplete Motion Feature Tracking 

Main reasons that lead to incomplete motion include: (1) one feature over- 
laps with others; (2) other parts of human configuration occlude the fea- 
tures; (3) other parts of human configuration make features disappear a- 
way from the view. When these cases occur, different strategies will be 
used in feature tracking. 

Tracking Overlapped Features 

in motion capture, multiple features overlap with each other, resulting in 
overlapped features. In this case, the size of clustered region is unequal to 
that of the feature to be tracked. Thus,  clustering algorithm alone cannot 
track the gravity center. Generally, the movement of limb involves trans- 
lation and rotation. But other parts rotate only a little, thus only transla- 
tion is considered in feature tracking. We match the image with the esti- 
mated template combined by several overlapped features. The basic proce- 
dure is as follows. 
Step 1 Estimate motion template for each feature. Motion template can be 

described by mid-axis, which is defined as A = { (x ,  y ) ,  m,  n, 0}, 
where (x ,  y) is the gravity center of motion template, m, n 'are 
the length and width of template, 0 is the angle between mid-axis 
and y-axis which is called rotation angle in this chapter. According 
to the tracking results in frame i, Kalman filter is used to predict 
the rotation angle and the gravity center of motion template in 
frame i-b-1. To calculate the rotation angle in frame i, we assume 
the warping of feature is mainly caused by rotation circled by z-ax- 
is. 

In this chapter, we only consider the rotation circled by z-axis. 
The motion templates of the joints of limbs are described in Fig. 4. 
7, where O, A ,  B are the feature templates in frame i - -1 ,  while 
O',  A' ,  B' are the corresponding feature templates in frame i, and a, 

are the rotation angles of feature A',  B' respectively. The rotation 
angles can be approximately computed as follows: 
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Step 2 

Step 3 

Fig. 4.7 Motion templates Fig. 4.8 Combined features 

Ax=(x~(A ' ) - -x i (O ' ) ) - - (x~- i  (A)--x,-1 (0))  

Ay=(y~(A')--yi(O'))--(y~_~ (A)--y~-i  ( 0 ) )  

a =  2arctan (Ay/Ax)  

A x ' =  (x~ (B')  --x~ (A ' ) )  - -  ( x i -  1 (B) - - X i - - 1  (A))  

Ay '= ( yi (B') --yi (A') ) -- ( y~-i (B) - -Y i -1  (A) ) 

fl= 2arctan (Ay' / Ax') 

where xi (p)  and yi (P)  are the coordinate offsets of the gravity 
center of feature p in the ith frame along x and y directions. Ac- 
cording to the orientation and position of the template in the previ- 
ous frame, we can estimate the warping template of each feature 
in the current frame. 
Calculate the combined templates of overlapped features. Let the 
predicted occluding feature template be 11 (x ,y )  (Fig. 4 .8 (a ) )  and 
the occluding feature template be I z (x , y )  (Fig. 4 . 8 ( b ) ) ,  we can 
calculate the combined template (Fig. 4.8 (c))  based on interfer- 
ence measures of two features, which can be described as. 

ll/lc (X, y) = W ( x ,  y)l l  (x,  y) + [ l - - W ( x ,  y) ~12 (x,  y) 

where W ( x , y )  is the window function: 

1, p(x ,  y ) E A  
W(x ,  y) - -  O, p ( x , y ) ~ A  

where A is the occluding template. 
Feature matching. In this step, model-based matching is utilized 
to match overlapped feature with image. If the combined template 
is A =  {(x,  y ) ,  rn, n, O} and the image block to be matched is 
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(1) 

(2) 

(3) 

A 1= { ( x  1, y l ) ,  m; n,1 0 I} ,  the approach to calculate optimal 

match is as follows. 
f I I { m X n  ~ mt X n , row -- m ,  co lumn = n l or else r o w - -  m , 

1 
c o ~ l t m 1 1 - - -  1l , 

Grid lines are drawn in the direction arctan 0 and arctan(--1/0) o{ 
block A, and we call the point o{ intersection sub-pixel Xi~ ( 0 ~ i  
~ m ,  O ~ j ~ n ) ,  then calculate the color Xij [Red-], X~j [Green],  
X~j [-Blue-] corresponding to the pixels of features in the previous 
frame i 
Calculate Squared Sum o{ Difference (SSD) o{ color. 

E ( q )  = ' ~  w {M~c(X,y)  - - M ~ ( x , y ) } E d x d y  
iE {r,g,b} C 

~i l ] {W(x ,  y ) ~  ( x , s )  + [1 - W(x,s)-]xi  (x,  y) - E 
i r, E{ g b }  C 

, / J  

M i ( x ,  y )  } 2 d x d y  

where w~ is the weight {actor o{ color RGB, C is the image region to 
be matched. Select the region M ( x , y )  which minimizes E ( q )  as the 
optimal matching feature. And calculate the gravity center o{ each 
template in the combined template as the tracking results. 

Tracking Partial Occluded Features 

When the feature disappears from the view or reappearsinto view, features 
are usually partially occluded by other parts of human configuration. We 
extend the template o{ clustered region to track these features more pre- 
cisely. 
Step 1 Clustering algorithm is first used to calculate feature region, and 

then the size A of clustered region and the gravity center O ( x ,  y )  

are calculated. 
Step 2 Calculate the corresponding rectangle A ( x ,  y, m, n, 0) with the 

size equal to the clustered region. The center o{ rectangle A is the 
gravity center o{ clustered region. Its width is the width of tem- 
plate. 0 is the rotation angle estimated from the previous frame. 

Step 3 Extend the width o{ rectangle to the width o{ template along the 
direction of mid-axis, and then calculate the center of the extended 
model, which is considered as tracking results. Fig. 4.9 shows the 
extended template, where the Solid line describes the clustered re- 
gion with the gravity center O, the correspor~ding rectangle is de- 
noted by the dotted line, and O I is the gravity center o{ the ex- 
tended rectangle. We consider 01 as the tracking result. Taking 
the tracking o{ two ankle points as example, when right ankle 
point disappears gradually, the extension of features can be de- 
scribed by Fig. 4.10. 
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Fig. 4.9 Extended template Fig. 4. 10 Tracking result of partially occluded feature 

Tracking Disappeared Features 

Different weight factors for position are used to predict the positions of im- 
age features. Then the 3D coordinates of two image features are recon- 
structed, and the predicted 3D feature is matched to the reconstructed 3D 
feature for tracking the disappeared feature. 

Since the disappeared features will appear in view again, we search for 
features in the neighborhood of the predicted position. Once a new feature 
appears in the view, we update the attributes of feature to help the track- 
ing of the next frame. 

4.2.3.4 Testing Tracking Results 

Error inevitably exists in the tracked results. Experimental results show 
that once the error in the tracking results is not tested and removed, accu- 
mulative errors will become big enough to lead to false match. In order to 
improve the robustness and precision of the tracking algorithm, we test 
our tracked results and remove results with big errors. There are two 
kinds of testing methods, namely the cross-correlation testing and the 3D 
model based testing adopted in VBHAS VS. 0. 

Cross-correlation Testing 

To test whether the color of the tracking results reflects the color of block 
correctly, we calculate the correlation coefficient 2 based on the brightness 
of the 3 X 3 area centered around the feature point: 

( Ik-1 ( i , j )  - -  -Ik'--1 ) (Ik (i  --  p , j  --  q) --  -[k ) 
2 - - -  i = + 2 , j = - 1 - 2  

4 ~ (Ik-l(i'j)--It'-l)2~ 2 (Ik(i--p'J--q)---i')z 
i = - t - 2 ,  j = :::t::2 i = - t - 2  , j = + 2  

m 

where I k - l ( i , j )  is the brightness of point (i,  j )  in frame k - - l ,  Ik-1 is the 
mean brightness of the region centered around point (i, j )  in frame k--1 ,  
Ik ( i - - p , j - - q )  is the brightness of tracks in frame k ,  I,  is the mean bright- 
ness of the region centered around point ( i - - p ,  j - - q )  in frame k. Experi- 
mental results demonstrate that it is reasonable to set the threshold as 
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0.9. If the correlation coefficient is more than 0.9,  it means the tracks re- 
flect the color of block correctly, or else take p and q which maximize the 

in the neighbor as the tracking results. 

3D Model Based Testing 

For overlapped features and disappeared features, cross-correlation test 
cannot be used to test the relationship of brightness between consecutive 
frames. Instead, we utilize 3D model to test the tracking results. Firstly, 
we reconstruct 3D coordinates of the corresponding two image features, 
and then calculate SSD of position between the reconstructed 3D feature 
and the predicted 3D feature. If SSD is less than the threshold, we take it 
as qualified feature tracking results. 

4 . 2 . 4  Human Motion Tracking in Video via HMM 

As discussed in previous sections, image attributes alone are not compe- 
tent for solving all problems of feature tracking. High-level semantic in- 
formation should be introduced into the feature tracking. 

The spatio-temporal prediction and attribute matching based approach 
can achieve fine tracking results in initial frames (at least 10 frames). 
Based on this assumption, we propose a Hidden Markov Model (HMM) 
based tracking approach which does not need many training samples. The 
training samples are obtained by the motion prediction and attribute matc- 
hing based approach, and with the tracking going on, more tracking re- 
suits can be added into the training set. Thus the precision of HMM based 
tracking can be improved simultaneously. The basic steps can be described 
as follows. 
Step 1 Estimate the candidate point via spatio-temporal correlative model. For 

the reference point (consider the pelvis joint as the reference 
point), we use the motion model with evenly inter-frame transla- 
tion to achieve Kalman filter prediction. For other human configu- 
ration joints, we regard the reference point as the benchmark to a- 
chieve motion prediction based on motion model with translation 
and even rotation. The motion model of reference point is. 

where 

S ( k + l )  = F .  S ( k )  + G . n ( k )  

F - -  1 T , G -  

O 1 L 1 _] 

(4-23) 

According to the prediction results, the real tracking result of 
this point is the reference point of the motion model of other 
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Step 2 

Step 3 

(1) 

(2) 

points, which is: 

Pi+l (Chi ld)=R " Pi+l (Parent)-+-T 

I i l  [COS~ n t  sinwt i l  [ X[l'l ] 
= --s wt coswt - -T 

0 
+ T + G .  n(k) (4-24) 

Classify the features by Expectation Maximization (EM) based 
clustering approach and interference degree. 

According to the content of Sect. 4 . 2 . 2 ,  we can compute the 
interference degree between features. The adaptive EM clustering 
algorithm is used to obtain the size of feature, denoted as A. And 
the gravity center of the cluster p can also be computed. 
According to the interference degree between features and the size 
of cluster, we can judge whether the current feature is solitary 
feature, overlapped feature, partially occluded feature or disap- 
peared feature. 
For each solitary feature and partially occluded feature, consider 
the motion and image attribute of candidate point as the observa- 
tion vector, use motion attribute and image attribute based HMM 
model to achieve precise feature classification and recognition. 

In terms of general HMM model, greedy algorithm with large 
amount of training samples (Baum-Welch) is suitable for feature 
tracking in image sequences. We compute the prior model using 
specific constraints without much training samples. 
State vector In HMM based feature tracking, the state vector is 
designated as the center of the features of each color block. In our 
VBHAS, the tracking of 16 feature points in each frame is nee- 
ded. The combination of feature analysis and feature recognition 
ensures that once the {eatures are recognized, they can be accu- 
rately tracked. 
The number of observations M corresponding to each state V =  
{Vl,Vz, "", Vu} can be used to describe the observations corre- 
sponding to each state, where vi ( l ~ i ~ M )  denotes an observa- 
tion represented by a set of feature vectors. The dimensionality of 
the vector is the number o{ features. In feature tracking, the ex- 
tracted feature attributes include image attributes and motion at- 
tribute. The image attributes include the variation of average 
brightness of the color blocks in adjacent frames, the variation of 
average hue and the variation of average saturation; the motion at- 
tribute is the inter-frame acceleration ax and ay in the image coor- 
dinate system. These attributes are independent of each other, 
and they are only related to the states rather than the time of the 
states, therefore the dimensionality of the feature vector is five. 
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Due to the continuous distribution of observations, the total num- 
ber of observations is hard to obtain. So, we first extract the ob- 
servation using spatio-temporal constraint based prediction, then 
accordingto the experimental result, we select five observations. 
The prior model of observation g = { b, (k) } b~ (k) = P [o, = vk ] 
q ,=j -] ( l~k~M)  denotes the probability when observation vk oc- 
curs at time t with state j. B is an N •  M matrix, where the row 
denotes the state and the column denotes the observation. The 
probabilistic distribution is not obtained by parameter training 
through greedy algorithm, instead, we suppose each observation 
satisfies a normal distribution and the parameters are obtained by 
statistic analysis based on the samples, i. e. , u and a z can be de- 
scribed as: 

1 ~  a z =  1 2 u = - -  X i ,  - -  ( X ~ - - u )  2 

7Z i =  ~1~ i =  1 

State transfer probability matrix A =  {a0 } A is an N X N matrix, 

where ao=P[q,+l =j  [ q ,= i - ]  ( l ~ i , j ~ N ) ,  ao satisfies a0 ~ 0  

( V i , j )  and ~u__la 0 = 1 ( V i). In feature tracking, the prior mod- 
el instead of the posterior probability obtained by sample training 
is used in the state transfer probability matrix of HMM. Because 
the observations are ordered according to y coordinate or the grav- 
ity center, the state transfer probability should be inverse ratio to 
the difference between image coordinates along y directions of 
gravity center. The y coordinate subjects to the estimated y coor- 
dinate in current frame which could be computed according to the 
position, speed, and acceleration of features in previous frame. 
State transfer probability matrix can be computed as below: 

ao(k)ocl/ [[ Di(k--1)--D~(k--1) ]1 

where D~(k--1)=y~(k--1)+v~(k--1)XT+O.  5Xa~(k- -1)X 
T 2, a0 (k) is the transfer probability from state i to state j in 
frame k, y~ (k- -1)  is the y coordinate of the gravity center of state 
i in frame k - -1 ,  v~ (k - -1 )  is the speed offset along y direction of 
the gravity center of state i in frame k - -1 ,  a~ (k- -1)  is the accel- 
eration offset along y direction of the gravity center of state i in 
frame k - -1 ,  T is the time interval between adjacent frames. 
State probability z - -{m } State probability means for certain ob- 
servation O=(o~ ,oz ,"" ,or), the probability that certain state oc- 
curs at the initiative time. All the m in zri =P[ql =i-] ( I ~ i ~ N )  
construct a 1 X N matrix z. The prior probability instead of poste- 
rior probability is designated as the initiative probability of HMM 
model. The approach for computing the prior of initiative proba- 
bility is to compute the estimated y coordinate of each state and 
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make it inversely proportional to corresponding probabilities. This can 
be formally described as: 

Pi (k)oc l/Di (k--1) 

where P~ (k) is the initiative probability of state i in frame k. 
Step 4 For each occluded feature and disappeared feature, use motion at- 

tribute based HMM model to achieve precise feature classification 
and recognition. 

Step 5 Cross-correlation testing and 3D model based testing are utilized to 
test the feature. 

Given the HMM model described above, we can use Viterbi algorithm 
to compute the optimal order of states corresponding to the observations. 
The center of each state is the corresponding tracking result. 

4 . 3  3D Motion Reconstruction 

We have discussed in detail the human tracking in multi-view video in the 
above sections. The tracking result is 2D human motion sequence wi th in-  
complete motion information. The result cannot satisfy the requirement of 
applications such as motion edit and 3D animation, therefore, the recon- 
struction of3D motion sequence is necessary. First,  we should bridge the 
gap between spatial points and image feature points via camera calibration, 
and then 3D reconstruction can be achieved by camera calibration and the 
tracking results of the image sequences. 3D reconstruction is still an open 
issue in computer vision E3.8.9~. 

Before camera calibration and 3D reconstruction, we will introduce the 
imaging process of objects, i. e. , the projection from 3D spatial points to 
2D image plane. Ideal projection model is pinhole model. Fig. 4. 11 de- 
scribes this procedure, where uOiv is the 2D image plane, O is the view- 
point, Oiuvz is the camera coordinate system, and OwXwYwZw is the spa- 
tial coordinate system. Suppose Pu is the ideal projection of object Pw (Xw, 
Yw, Zw) to image plane, while Pd is the 
practical projection due to the 
distortion of lens. According to the 
procedure, calibration is to obtain the 
relationship between image feature 
points and 3D spatial points, aswell  as 
the inner parameters of cameras. On 
the contrary, 3D reconstruction aims 
to recover the 3D coordinates of track- 
ing results via camera calibration and 
2D tracking results. We will discuss in 
detail the approach of 3D reconstruction. 

O 
,/Ik =Y 

Xw P,~(X,,,Yw,Z,,) 

Fig. 4.11 The imaging model 
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4 . 3 . 1  Tsai Single Camera Linear Calibration Algorithm 

Tsai, et al. c~0~ proposed a rapid and accurate camera calibration algorithm 
based on former works. According to the observation of calibration model, 
he proposed a two-step calibration approach: first, the 3D orientation, po- 
sition and step coefficient are computed; then the focal length, lens distor- 
tion coefficient and z coordinate are computed. We will introduce the algo- 
rithm in brief. 

Following the knowledge of computer graphics, arbitrary point Pw ( X w ,  

Y w , Z w )  in the world coordinate system can be projected to point P ( u ,  v)  

on the projection plane through two transformations: 

[ X~ 
Y~ 
Z~ 

--R 
Xw 
Yw 
Zw 

--T (4-25) 

where 

X~ Y~) 
( u , v ) =  f . .  ~-~, f .  ~--~ (4-26) 

R - -  r4 r5 r6 , T - -  T~ , 

7 r8 r9 Tz 

and (u,v)  denotes the image coordinate of corresponding point, f denotes 
the camera focal length, (Xc, Yc, Zc) denotes the coordinate of spatial 
point under camera coordinate system. 

The problem of camera calibration can be described as: given some 3D 
objects and the corresponding features in 2D image plane, solve for the 
camera projection parameters R, T and f .  

Tsai algorithm has two forms: the first is the calibration based on co- 
planar five points; the second is the calibration based on non-coplanar sev- 
en points. And we only discuss the camera calibration algorithm based on 
non-coplanar seven points. 

Firstly, we introduce the intermediate variables T y l s ~ r l ,  T ; l s ~ r z ,  

T yXs~ra ,  T - j ~ s x T ~ ,  T y l r  4 , T ;~rs ,  T ;~r6,  and the algorithm comprises 
of two steps. 
Step 1 Compute the orientation, position and step coefficient. 

(1) Compute the image coordinate (Xf, Yf). Suppose s~ = 1, compute 
(Xf, Yf) according to the following equations: 

X ~ = sxd -~ l X d Av C~ , y f --  d-~ l y d --[- Cy 

(2) 

where dx and dr are the physical size of each pixel along x and y 
direction respectively. 
Compute T y l s x r  1 , T y l s x r  2 , T -~ls~ra, T ; l s ~ T ~ ,  T yl r '4  , T ylrs ,  
T ~-~r6. According to equations (4-25) and (4-26), above equa- 
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(3) 

(4) 

Step 2 

tions can be converted into following linear equations via interme- 

diate variables. 

[YdiXwi , YdiY wi , YdiZwi , Ydi , - - X d i x  wi , - - X d i Y  w i -  XdiZwi ] " 

- - lr  T -1Tx T ~-lr4 T ~-lrs T ~-~r6 IT =Xd~ [ T - j l r l , T ~ l r 2 , T ,  3, ~ , , , (4-27) 

where (Xwi ,Ywi  , Z w i )  is the world coordinate of the ith calibration 
point, while ( X a i ,  Yai)  is the corresponding image point of the ith 
calibration point. If the number of corresponding point pairs sur- 

-1 T ~-1 T ; 1  T - 1 T x ,  T -1 T -1 passes seven, T ,  r l ,  r2 ~ r 3  ~ y y r 4  ~ y r 5  

T - i r  x 6 can be obtained by solving the linear equations. 
--1 -1 T -1 T - l s  xra ,  T ; l s  x T r  T y r4 , According to T y s ~ r l ,  y s~r2 ,  y 

T x-lr5, T ylr6,  compute (rl ,r2 , " "  , r 9 ,  T ~ ,  T y ) .  (rl ,r2 ,"" ,r9, T~, 
T y )  can be solved by the following approach: 

Compute II T, II - (A~ +A~ +A~)-~/2 

- l r  A2 = T - l r  A3 = Determine the sign of Tx. Let A I = T y  ~, ~ 2, 

- - l r  A6 = T - l r  A7 = T - l r  The - ' T ~ ,  A s = T y  4, s ,  6 T ,  ira , A 4  = T ,  y y �9 

sign can be determined by tentative method: first we select point 
I ( X w i , Y w i ,  Zw~) far away from the center of image and suppose 
the sign is positive. Then,  compute the following values rl = 
A1 * T, ,  r2 =A2 �9 T , ,  ra =Aa �9 T , ,  r4 =Aa " T , ,  r a - A 6  * T, ,  
r6 = A T  �9 Ty , T~ = A 4  * Ty , x = Xw * rl Av Yw �9 r2 + Zw �9 ra + Tx , 

y =  Xw �9 r4 A v Y w  ~ r5 At-Zw ~ r6 + Ty .  If the sign of X is the same 
as that of Xd, and the sign of Y is the same as that of Yd, then the 
sign is positive, or else the sign is negative. 
Compute s~ according to equation s ~ = ( a ~  + a  22 + a ~ )  -~/2 ]1 Ty ]l 

Compute the rotation matrix R. According to the intermediate 
variables, we can obtain rl = A I  ~ T y / s ~ ,  r2 = A 2  �9 T y / s ~ ,  ra = 

A3 �9 r y / s x ,  r4 = A 5  ~ T y ,  r 5 - - A 6  ~ T y ,  r6 = A T  �9 T y ,  Tx  = A 4  �9 

Ty. Due to the orthogonal rotation matrix R, the third row can 
be computed by the cross multiplication of the first row and the 

second row. 
Compute the focal length f ,  the lens distortion coefficient z, and the 
position T~. First, we assume the image distortion can be omitted and 

compute T~ and f according to equatios (4-28) and (4-29). 

where 

f ) = w i d y Y i  ( yi , - -  d y Y i )  T~ (4-28) 

yi--- r4 �9 Xwi-[-r5 �9 Ywi-[-r6 �9 Zwi+T~ (4-29) 
wi = r7 �9 Xwi -[- r8 �9 ywi -[- r9 �9 Zwi 

Then, T, ,  f ,  k; and k2 can be precisely computed. 
We obtain seven equations based on the seven corresponding point 
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pairs, thus solving for the parameters is to find the solution of the equa- 
tions. To the coplanar point, suppose the z coordinate of each point is ze- 
ro, then equation (4-27) is linear equations containing five unknown variables. 
The calibration parameters can be obtained by solving the linear equations. 

4 . 3 . 2  Nonlinear and Non-coplanar Calibration Model 

In our motion capture system, we improve the Tsai linear calibration mod- 
el, and propose a novel nonlinear and non-coplanar calibration model. 
Based on this calibration algorithm, we consider the 3D reconstruction of 
uncertainty motion and obtain 3D human motion data via nonlinear optimi- 
zation approach. 

Based on the calibration model proposed by Tsai, et al. El0?, we adopt 
nonlinear and non-coplanar calibration model considering the nonlinear dis- 
tortion of image. The relationship between image feature point (u ' , v ' )  and 
spatial point (Xw,Yw, Z . )  can be described as. 

[ljdx 0 u0][! 0 00 1 , xw7 
Zc ~ = 0 1/d~ Vo f 0 t Yw = M X w  (4-30) 

0 0 1 1 w 

u = u  ~ ( l + k l r 2 )  , v = v '  ( l + k l r 2 )  , r 2 = x  2-+-y2 (4-31) 

x = d ~ ( u - - u o ) / S ~ ,  y = d y ( v ' - - V o )  (4-32) 

where (u,v)  is the image coordinate under nonlinear transformation when 
the nonlinear radial distortion of image is taken into consideration, d~ and 
d~ are the physical size of each pixel along x and y direction respectively, f 
is the camera focal length, dx, dy and f are inner parameters of the camer- 
a. Zc is the length of spatial point 's  coordinate under camera coordinate 
system along z direction. (Xw,Yw,Zw) is the position of spatial point un- 
der world coordinate system. R =  (R~ ,Ry,R~) is a 3 X 3 orthogonal rota- 
tion matrix, t = ( T ~ ,  Ty ,  T~) is the three-dimensional translation vector. 
0 T = ( 0 , 0 , 0 ) ,  M is the transformation matrix, k~ is the radial distortion 
coefficient with the nonlinear distortion. S~ is the uncertainty proportion 
factor along x direction under image coordinate system. (u ~ , v ~) is the ob- 
served image coordinate, (x,  y) is the image physical coordinate when the 
uncertainty along x direction is taken into consideration, (u0, v0) is the origin 
position of image physical coordinate system under image coordinate system. 

To solve the above equations, the image points and corresponding spa- 
tial points are needed, and the calibration object is usually used to calibrate 
the camera and obtain the 3D coordinates of spatial points. 

In our system, the calibration object is designed as Fig. 4.12. The cali- 
bration object is a solid frame including 12 spatial points which distribute 
on different planes and their coordinates can be obtained precisely by met- 
rical instrument. Experiments indicate that the calibration object is compe- 
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tent for multiple applications as long as the 
error does not surpass 1 cm. The image feature 
points are automatically tracked based on the 
camera model. 

Based on the spatial point (Xw, Yw, Zw) 
and corresponding image feature point ( u ' ,  
v') ,  we can solve for 11 unknown variables 
( f ,  kl, Uo, Vo, Sx, Rx, R, ,  R~, "Ix, Ty, 
T~). According to equation (4-30), one point 
corresponds to two equations, thus six points 

Fig. 4.12 Calibration object 

are necessary to solve for the variables, and usually the number of calibration 
points are larger than seven. 

When solving for the nonlinear calibration model, we first get the initial 
solutions via the linear calibration model, then the refined solutions can be 
obtained by nonlinear optimization algorithm. Detailed approach is de- 
scribed as follows. 
Step 1 Solve for the initial solution via Tsai linear camera calibration model. 
Step 2 Obtain the optimized value of f ,  kl, T~ through Levenberg-Mar- 

quardtapproach EI~?. 
Step 3 Let the result of Step 2 be the initial input of nonlinear equations, 

use nonlinear Levenberg-Marquardt method to refine all the pa- 
rameters except for the center of image plane (u0,v0). 

Step 4 Let the result of Step 3 be the initial input of nonlinear optimiza- 
tion algorithm, further refine the solutions and obtain the precise 
calibration parameters. 

More attention should be paid to the following two problems. 
�9 In equation (4-30), (u, v) is the image coordinate obtained by nonlin- 

ear transformation when the nonlinear radial distortion of image is 
taken into consideration, while (u' ,v ')  is the real tracked image coor- 
dinate, therefore equations (4-31) and (4-32) are needed to obtain 
(u, v) for 3D reconstruction. 

�9 Experimental results indicate that when the origin of world coordinate 

system is in the view plane of camera, the calibration error generated 
by nonlinear and non-coplanar camera calibration model is large. In 
this case, we solve the problem by translating the origin of world co- 
ordinate system out of the view plane. 

4 .3 .3  3D Reconstruction of Motion Sequences 

3D reconstruction aims to recover 3D motion sequence of the tracked fea- 
ture points. Traditional approach is to achieve 3D reconstruction via the 
calibration results. The rationale is to recover 3D information based on the 
transformation between spatial points and image feature points according 
to projection principle which can be described as: 
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Zc ul - - M I X  l, (4-33) 

Zc, u2 =M2Xp (4-34) 

where Zcl and Zc, are z coordinates of spatial point under two cameras' co- 
ordinate system respectively, Xp is the homogeneous coordinate of spatial 
point P under world coordinate system, Ul and uz are the homogeneous co- 
ordinates of P1 and Pz which are the projections of spatial point P onto the 
image planes, M1 and Mz are projection matrices of two cameras respec- 
tively. 

When the tracking result (u ' ,  v') is known, six equations are enough 
for solving for five unknown variables (Zcl, Zc, , Xp ( x ,  y ,  z ) ) .  The de- 
tailed approach is to obtain ( u , v )  via equations (4-31) and (4-32) first, 
then equations (4-33) and (4-34) can be transformed to get: 

AXp --B (4-35) 

where A is 4 • 3 matrix, and B is 4 • 1 matrix. Solve for Xp through least 
square algorithm and obtain: 

Xp -- (AT A ) - I  A'r B (4-36) 

The least square algorithm ensures the minimal distance between the 
recovered 3D point and the two lines connecting the origins of camera coor- 
dinate system and image feature points (one line corresponds to one camera). 

Experimental results show that the approach can satisfy requirements 
of most applications, however, when we project the reconstructed spatial 
feature points back onto the image plane, the error tends to be large. As 
Fig. 4.13 shows, p is the reconstructed spatial point corresponding to the 
image feature points Pl and Pz, while Pl '  and Pz' are the projections of p 
onto the image planes, pl ~ and Pz' deviate from Pl and Pz significantly, 
and this is intolerable to feature tracking. This is because uncertainty is in- 
evitable in 3D reconstruction. 
For example, the error of 
calibration result makes the 
two lines connecting the ori- 
gins of camera coordinate sys- 
tem and image feature points 
un-intersectant. Least square 
algorithm only generates the 
approximate solution, moreo- 
ver, there is no physical mean- 
ing in solving the problem 
through least square algo- 
rithm. The projection of re- 
constructed spatial point is of- 
ten used to guide the tracking, 

1 02 

Fig. 4. 13 Image feature points and recon- 
�9 structed 3D spatial point 
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but the above approach cannot satisfy our need. If the projections of re- 
constructed spatial point approach the tracking results, the requirement 
can be satisfied, thus we consider the 3D human motion reconstruction ap- 
proach which takes motion uncertainty into consideration. The strategy 
and realization of our approach are described as follows. 

The optimization criterion of our approach is to minimize the distance 
between the tracked image feature points and the image projections of the 
reconstructed 3D spatial point, i. e. , minimizing the following formula. 

2 [ (  M11:c_~_M12y__~_MIaZ__[_M14)2 d= ~ u i - -  
~: Ma~ x + M32 y + M33 z + M34 -~- 

( M2~x+M22y+M2az+M24)2 1 
72i --  M31 5c _qt_ M32 y -~- M33 z + M34 (4-  37) 

where (x,y,z) is the coordinate of spatial point. Compute the partial de- 
rivatives o{ x,  y,  z and set the derivatives to be zero to ensure d reach its 
minimal value. 

t ff, (x, y,z)=ad/ax=O 
f2 (x, y,z)=ad/ay=O (4-38) 

a (x,y,z)=3d/3z=O 
The nonlinear equations in (4-38) can be solved by Newton method for the 
coordinate of spatial point ( x , y ,  z). 

4.4  Case Studies: VBHAS V3.0 

VBHAS V3.0 is an intelligent animation system which integrates camera 
calibration, video decoding, image synchronization, 2D feature tracking, 
3D motion reconstruction, motion edit, 3D modeling and motion reuse. 
The system framework can be described as Fig. 4 .14 ,  and the main user 
interface can be seen in Fig. 4.15. 

Two-camera-based human animation technique includes following steps. 
Step 1 Decoding, denoise and synchronization algorithms are used to pre- 

process the raw video sequences. 
Step 2 The human motion features are then captured by the automatic 

motion tracking algorithm, and the result is the 2D human motion 
sequence. 

Step 3 Reconstruct 3D human motionsequence through the camera cali- 
bration result and 3D reconstruction algorithm, then the recon- 
structed 3D motion is denoised to obtain smoothened 3D motion 
sequence. 

The motion synthesis function of VBHAS V3.0 is composed of follow- 
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Fig. 4.14 The framework of VBHAS V3.0 

Fig. 4.15 The main interface of VBHAS V3.0 

ing modules. 
�9 3D motion editing through motion editing and reuse algorithm, resul- 

ting in motion sequence which can satisfy the requirement of the scene 
or the animator; 

�9 Multiple characters ~ motion fusion according to the captured human 

motion and the result of motion editing~ 

�9 Create vivid personalized animation by transforming the edited and 

fused 3D motion sequence to the pre-built 3D animation model. In an- 
imation synthesis, complex virtual scene is created and combined with 
the motion to help the animator build multiple personalized anima- 
tions. 

We will discuss camera calibration, feature tracking and motion recon- 
struction in detail in the following sections. 
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4 . 4 . 1  Camera Calibration 

In two-camera-based human motion capture,  nonlinear non-coplanar cali- 

bration model is used in V B H A S ,  and the 3D metrical data of the model is 

shown in Table 4.1 where the 12 points correspond to the points of the 

calibration object in Fig. 4.12. We perform the camera calibration on the 

test data set ( h t t p . / / w w w .  cs. cmu. e d u / ~ r g w / T s a i C o d e ,  html)  provided 

by Carnegie Mellon Universi ty ( C M U ) ,  and the experimental  result  is 

shown in Table 4.2.  It is demonstrated that  the error of VBHAS calibra- 
tion algorithm is quite small. The experiment on 3D reconstruction in 
Sect. 4 . 4 . 3  further proves the efficiency of this calibration algorithm. 

Table 4.1 Metrical data of calibration object 

Num. X/mm Y/mm Z/mm 

1 2,040.16 2,081.67 1,852.70 

2 3,041.40 2,074.50 1,856.16 
3 3,289.57 2,076.10 1,517.80 
4 1,787.88 2,084.50 1,594.40 
5 1,785.70 2,084.52 1,278.50 
6 2,117.08 1,715.44 1,103.69 
7 2,664.60 1,702.75 1,077.69 

8 3,285.89 2,076.10 1,251.30 

9 2,568.10 2,508.52 1,568.44 

10 2,852.88 2,355.39 1,206.30 

11 2,221.62 2,519.37 1,585.90 

12 1,925.37 2,244.96 964.25 

Remark is measured by instrument. 

Table 4.2 Comparison of the calibration result 

T~I T~I T,I 
Type 

m m  m m  m m  

Ideal data --100.268888 --85.323235 1999. 761873 
Our result --100.088440 --85.136185 1999.154367 

Error 0. 180448 0. 18705 0. 607506 
Rx Ry Rz 

Type (radian) (radian) (radian) 

Ideal data 0.52348854 0.017487199 0.03500024 
Our result 0. 523401 0.017581 0. 034999 

Error 0.00008754 0.000094 0.00001 

4 . 4 . 2  Feature Tracking 

4 . 4 . 2 . 1  Tracking Result of VBHAS V3.0 

T o  validate the efficiency of the multi-view feature tracking algorithm pro- 
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posed in this chapter, we apply feature tracking to the video sequence con- 
taining jumping motion. First the tracking result of optical flow approach 
is presented then the comparison of optical flow tracking with the feature 
tracking approach is given. 

Fig. 4.16 describes the tracking results by optical flow algorithm (the 
white points in the color block are the tracking results). Fig. 4. 16 indi- 
cates that to a video sequence of human motion containing 25 frames. 
(1) When the distance between human features is small, the inter-feature 
influence is large and the tracking results are not good enough. As is 
shown in Fig. 4.16(a) and (b) ,  when the distances between pelvis point, 
right hip point and left hip point in the 10th, 15th, 20th, 25th frames are 
small, the error of feature tracking tends to be large, while the tracking 
results of the solitary features are acceptable~ (2) When the motion of hu- 
man features is salient, the feature tracking tends to fail, e. g. , the right 
elbow point and the left elbow point of the 20th, 25th frames in Fig. 4.16 
(a) and (b). Experimental results indicate that optical flow algorithm is 
incompetent for non-solitary features and features with salient motion, 
therefore, optical flow algorithm is not suitable for complex problems such 
as human motion tracking. 

Fig. 4.17 describes the tracking results by attribute quantization ap- 
proach. We can observe that: (1) the tracking of most feature points are 

Fig. 4.16 Tracking results by optical flow algorithm. (a) The 1st, 5th, 10th, 15th, 
20th, 25th frame captured by the left camera and the tracking results; (b) 
The 1st, 5th, 10th, 15th, 20th, 25th frame captured by the right camera 
and the tracking results 
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Fig. 4.17 Tracking results by the attribute quantization approach. (a) The 1st, 5th, 
10th, 15th, 20th, 25th frame captured by the left camera and the tracking 
results ~ (b) The 1st, 5th, 10th, 15th, 20th, 25th frame captured by the 
right camera and the tracking results 

quite accurate~ (2) the right wrist point, pelvis point, right hip point and 
left hip point in the 25th frame of Fig. 4.17 (a) overlap with each other, 
and in Fig. 4 .17(b) ,  the tracking of right hip point and left elbow point in 
the 15th frame fails. This is because the tracking results of our approach 
are always located at the center of color blocks, and when error occurs in 
the extraction of color blocks (the features overlap with each other or the 
color of background is similar to that of the color block), the feature matc- 
hing will suffer from inaccuracy. The experimental results indicate that 
when the features do not overlap with each other and the contrast between 
the color blocks and the background is significant, the tracking can be suc- 
cessfully performed by this approach. 

Fig. 4.18 shows the tracking results of incomplete motion feature track- 
ing approach which adopt the spatio-temporal correlation based method. 
To validate that the approach is suitable for more complex motion, we ap- 
ply the approach to jumping motion sequence with 60 frames. From Fig. 4. 
18(a) we observe that only the tracking of the right hip point in the 25th 
frame and the right wrist point in the 20th frame is not accurate, while in 
Fig. 4.18 (b ) ,  all the feature points except for the left knee point in the 
30th frame can be accurately tracked. Experimental results indicate that 
the approach is superior to the two kinds of tracking approaches introduced 
above. 
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Fig. 4. 18 Kalman filter based the spatio-temporal tracking results. (a) The 1st, 
5th, 10th, 15th, 20th, 25th, 30th frame captured by the left camera and 
the tracking results; (b) The 1st, 5th, 10th, 15th, 20th, 25th, 30th 
frame captured by the right camera and the tracking results 

The above experimental comparisons are based on the 2D tracking re- 
sults, we will then perform 3D reconstruction on the 2D tracking results 
and validate the algorithm efficiency by analyzing the vividness of 3D mo- 
tion sequence. Fig. 4. 19 depicts the captured video sequence of human 
walking and the reconstructed 3D human motion sequence. Self-occlusion 
occurs on hip point and wrist points on the 3rd frame in Fig. 4 .19(a) .  Fig. 
4 .19(b)  shows the experimental results in which the tracking is conducted 
by the attribute quantization based approach and the reconstruction is a- 
chieved by computer vision technique. The experimental results of 3D re- 
construction indicate that the approach proposed in this chapter can achieve 
accurate motion tracking even though self-occlusion occurs in human mo- 
tion. 

4.4.2.2 Performance Analysis 

The human tracking results of several approaches have been presented in 
the previous sections, now we will analyze in detail the performance of the 
approaches when tracking certain feature points. We only discuss the per- 
formance of attribute quantization based tracking approach. Specifically, 
we compare the tracking results of left hand point and left hip point of a 
human walking sequence. The frame rate of camera is 25 fps, the back- 
ground is simple and the motion of arms is significant so that the left hand 
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(b) 

Fig. 4. 19 Video sequence and the reconstructed 3D motion. (a) The key-frames of 
the captured video; (b) 3D human skeleton model reconstructed from the 
tracking results 

point and left hip point are occluded by human configuration some times. 
Two different approaches are executed for this experiment: (1)  image- 
based tracking approach, represented by optical flow algorithm; (2) our 
proposed attribute quantization based approach. The tracking result in 
Fig. 4.19 is used to analyze the performance, and the comparison of these 
two approaches is shown in Fig. 4.20. In video-based motion capture, the 
weight factors of brightness, position, speed and size of the solitary fea- 
tures are 0. 4, 0. 1, 0 .4  and 0. 1 respectively. To non-solitary features 
such as pelvis point, hip points and wrist points, the weight factors of po- 
sition, speed and brightness are 0.3,  0.5 and 0.2 respectively. 

Fig. 4.20 indicates that: (1) when self-occlusion occurs on left hand 
point and left hip point, they cannot be correctly tracked, because optical 
flow algorithm degenerates greatly due to significant change of brightness~ 
(2) when two features are correlated to each other and thus lead to self-oc- 

Fig. 4.20 The curves of human walking obtained by different approaches 
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(a) The 1, 4, 8, 12, 16,19th frames captured by one camera 

(b) The 1st to 19th frames of reconstructed 3D human skeleton in side view 

Fig. 4.21 3D reconstruction of jumping motion. (a) Several key-frames of the 
captured high jump video sequence~ (b) The corresponding recon- 
structed 3D human motion sequence 

clusion, multi-attribute quantization based approach can still obtain fine 
tracking results; (3 )  when the appearance of the feature point changes 
from self-occlusion to non self-occlusion, the multi-attribute quantization 
based approach bridges the gap between different feature points. While the 
brightness based approach degenerates rapidly when the appearance of fea- 
ture points changes continually. Therefore,  the proposed attribute quanti- 
zation based approach considers the contributions of riaultiple feature at- 
tr ibutes,  and improves the tracking results of self-occluded motion se- 
quence. 

4 . 4 . 3  3D Reconstruction 

Two CCD cameras are utilized in VBHAS V3.0  to capture human motion 

sequences. Some experimental results of two-camera-based 3D human mo- 
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tion reconstruction are shown in Figs. 4.21 and 4.22. Fig. 4.21 shows the 

reconstructed 3D motion sequence on some key frames of a jumping video. 
Fig. 4.22 is an example on walking video. 

Fig. 4.23 shows t h e  walking sequence captured by one camera and the 

corresponding reconstructed 3D human motion sequence in frontal view 

and side view respectively. We can observe tha t .  the captured 3D human 

motion is reasonable and realistic human animation can be synthesized by 

retargeting the captured motion to pre-built 3D human model. These ex- 
perimental results demonstrate  the feasibility and validity of the human 
motion capture approach introduced in this chapter. 

(a)Thel, 4, 8, 12, 16 , 20th frame captured by one camera 

Fig. 4.22 

(b) The lto20 frame of reconstructed 3D human skeleton in side view 

Reconstruction of walking motion. (a) Several key-frames of the captured 
walking video sequence; (b) The corresponding reconstructed 3D human 
motion sequence 
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(b) 

Fig. 4.23 Key-frames and the captured 3D human motion sequence. (a) The key- 
frames captured by one camera. (b) The reconstructed 3D human mo- 
tion sequence in frontal view. (c) The reconstructed 3D human motion 
sequence inside view 
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Video-based Facial Animation Techniques 

Facial expression creation is an indispensable part of human animation. As 
a special branch of computer graphics and image processing, facial expres- 
sion synthesis has been an attractive topic for over 30 years and has ap- 
peared in many applications, e.g. , complex human-computer-interface, 
interactive game, multimedia teaching, remote experience of virtual real- 
ity, and computer animation. Facial animation techniques have evolved 
from traditional key-frame technique to current techniques of image war- 
ping, video-based animation, physics-based animation and behavior anima- 
tion. Related research domain includes computer graphics, artificial intelli- 
gence and machine learning. The requirement of generating high quality 
facial animation is more and more urgent. The traditional literalness and 
rigid facial animation cannot satisfy people's need, thus it is necessary to 
develop high-quality and high-efficiency facial animation techniques. 

Due to the technology progress and cost reduction, plenty of digital e- 
quipments appear in everyday life. Under this background, the digital vid- 
eo has become an important information source in peop le ' s  life, thus 
video-based face modeling and expression synthesis is a trend of facial ani- 
mation techniques. Investigation indicates that over 83 ~ input information 
of human brain comes from visual information, so it is important to ex- 
plore the abundant information in digital videos and develop novel face 
modeling and facial animation techniques. This chapter introduces the 
main problems occurring in facial animation creation and new techniques to 
solve these problems. The new techniques are closely related to the state 
of the art theories and approaches of artificial intelligence and aim to guide 
the authors to observe and think in a new manner. The following content 
will focus on video-based facial expression synthesis, facial feature track- 
ing, 3D reconstruction of tracking data, video-based specific face modeling 
and data driven facial animation, respectively. 
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5.1 Facial Expression Hallucination 

Facial expression hallucination is a novel kind of facial expression synthesis 
technique, whose objective is to automatically estimate various facial ex- 
pressions according to the given face image with neutral expression. Some 
latent applications include human-computer interaction, film making and 
game entertainment. However, due to the sensitivity to human face, facial 
expression hallucination is still a challenging topic in computer vision. 

Current facial expression synthesis techniques can be divided into two 
classes, i. e. , image-based and 3D model-based. Liu, et al. [~? proposed an 
expression mapping approach based on Expression Ratio Image (ERI) .  
Combining illumination changes of one ' s  expression with geometry war- 
ping, they mapped an ERI to arbitrary {ace and generated more expressive 
facial expressions. Noh and Neumann [2] proposed an expression clone al- 
gorithm, which passes the motion vectors of the vertices in source {ace 
model to that in target {ace model. The two approaches retarget the source 
facial expression to a new object, but the synthesized facial expression is 
just the simple simulation of the source expression. Zhang, et al. [3] devel- 
oped a geometry-driven facial expression synthesis system which could 
generate photorealistic facial expressions through blending sub-region tex- 
ture images according to the facial feature positions. This technique is 
based on image warping and is not feasible when only one target neutral 
face image is given. Pyun, et al. [4] developed an example based method. 
They transformed facial expression to a target face through blending the 
pre-defined face models corresponding to the example source face models. 
However, this needs toilsome works to build the target key face models 
for blending. In this chapter, we introduce our facial expression hallucina- 
tion technique, both image-based and video-based. The video-based facial 
expression hallucination technique is an extension of image-based one, and 
can be regarded as innovative work in pattern recognition and computer vi- 
sion domain. 

5.1.1 Image-based Facial Expression Hallucination 

In this section, we introduce an image-based {acial expression hallucination 
approach. The purpose is shown in Fig. 5.1. We learn the relationship be- 
tween neutral {ace images and expressional ones with the help o{ a facial 
expression database. Then given a neutral face image that is not in the da- 
tabase, we could infer the plausible and expressive expressions. For each 
kind o{ facial expressions, we can set up an independent facial expression data- 
base. The algorithm and process are all the same when hallucinating different 
kinds o{ expressions. For simplicity, we only handle the happy expression. 
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O 0  

g O  

(b) Input (c) Hallucinated 

(a) pairs offac~ images in the training set 

Fig. 5.1 Hallucinate the plausible facial expression of an input neutral face image 
with the help of training set 

There are two steps to hallucinate facial expression, the first one is 
global manifold learning and inference, and the second one is local patch- 
based belief propagation. The happy face image generated by global meth- 
od looks smooth, which we take as the preliminary results. To make it 
more expressive, local low-level learning is carried out to do further refine- 
ment for the residual face image. 

5.1.1.1 Face Image Synthesis by Manifold Learning and Inference 

The global face image synthesis consists of the following two parts. 
Learning step.. (1) Learn the subspace (manifold) of face images with 

neutral expression in database. Then we obtain the intrinsic parameters of 
that manifold. Therefore, we can reconstruct face images by the parame- 
ters~ (2) Use the similar method to learn the manifold of face images with 
happy expression in database~ (3) Learn a relationship of these two mani- 
folds. Because the face images in the training set are in pairs, the relation- 
ship can be obtained by. a multi-variate regression. 

Inference step. (1) Obtain the parameters of an input face image with 
neutral expression~ (2) Infer its happy parameters from the relationship 
between learned neutral and happy intrinsic parameters; (3) Reconstruct 
the happy face image by the happy parameters. 

Dimensionality Reduction 

A face image can be regarded as a point in a high-dimensional vector space, 
with each dimension corresponding to the gray-scale of one pixel in the im- 
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age. For a 96 • 128 image, the dimensionality p is as high as 12,288 and 
apparently very high. In order to get parameters to describe the face im- 
age, the conventional method is Principal Component Analysis (PCA) or 
Eigenface. However PCA only discovers the structure of data lying on a 

linear subspace of the high-dimensional vector space. It is questionable for 
Eigenface to presume that all face images (e. g. with neutral expression) 

form a hyperellipsoid cloud. It is more proper to assume that face images 

with certain expression are lying on a nonlinear subspace, which can be re- 

presented by a nonlinear manifold. 

Nonlinear Manifold 

A manifold is a topological space which is locally Euclidean. The local Eu- 
clidean property means that there is a neighborhood which is topologically 
the same as the open unit ball in R m. 

We use ISOMAP Ea? to carry out nonlinear dimensionality reduction for 
face images. We assume that face images with a certain facial expression 
lie on an unknown manifold M embedded in the high-dimensional observa- 

tion space I. Let Ii denote the coordinate of the ith observation. We seek a 

mapping f .  I--~Y from the observation space I to a low-dimensional Eu- 

clidean feature space Y that preserves the intrinsic metric structure of the 
observations as much as possible. 

The reverse mapping f - 1 .  Y--~I from abstract facial feature vectors to 
images can be learned by fitting a regularization network to the corre- 
sponding points in both spaces. Dimensionality reduction using ISOMAP 
can not only capture more meaningful structural information than PCA, 
but also has much smaller residual variance in face image than PCA with 
the same dimensionality; therefore ISOMAP is better than PCA in dimen- 
sionality reduction. 

Obtain Parameters for Neutral Face Images 

For a set of N neutral face images, {Int}N= 1 , I n t ~  R O with N < D ,  suppose 

we already have obtained the set of pairwise geodesic distances ~0 = d(I? t , 

l},t) . We need find the neutral facial parameters embedded in the low-di- 

mensional manifold R m. 

Given these geodesic distances, we construct a matrix A - - [ a 0 - ]  and 

ao = - - ~ / 2 .  Defining H as the center matrix, H = I N - - e e r / N ,  where e is 
the N-dimensional vector of all ones, we set B = HAH. Let the eigende- 
composition of B be" B = V A V  "r , where A is a diagonal matrix with eigen- 

values and V is the N X p matrix whose columns are the eigenvectors of B. 
Since N % D ,  there are D - - N  zero eigenvalues in A. If the eigenvalues are 
ordered as 2 ~ 2 z ~ ' " 2 0 ~ 0 ,  then B=VNANV~,  where AN=diag  (2~ , ' " ,  

aN) and VN is the N X D matrix whose columns correspond to the first N 

eigenvectors of B. 
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The coordinates y~t are  set to the top m eigenvectors of VN. In detail, 

i be the ith component of the dth  eigenvector Ve of matrix VN. Then let Vd 

we set the dth component of the m-dimensional coordinate vector of y~t 

equal to ~dV~.  

y n t  __  E ~1"~ ' ~176176 ' ~ d l " ~ / ,  ~176176 , ~-m'-m l"/m -] T 

The parameters yhp for happy face images in the training set are ob- 
tained similarly. 

Obtain Low-dimensional Facial Parameters for an Input Neutral 
Face Image 

By the property of manifold, each neutral face image and its K-nearest 
neighbors lie on or are close to a locally linear patch of the manifold. 
Therefore we could reconstruct an input neutral face image Intn from its 

neighbors I(~). Reconstruction errors are measured by the cost function as 
follows: 

el = Intn - -  w j l  n t  (j) 
)=1  

where the weights w, summarize the contribution of the j th neutral face 
image in the training set to the input one ' s  reconstruction. To  compute the 
weights wj,  we minimize the cost function subject to the following con- 

straint: p k j=~wj = 1. The optimal weights w~ subject to this constraint are 
found by the following three steps. 
Step 1 Evaluate inner products between neighbors to compute the neigh- 

borhood correlation matrix C0 = I~) �9 I(~}~, and its matrix inverse 

C7~; 
Step 2 Compute the Lagrange multiplier 2 = - a / f l ,  which enforces the sum- 

to-one constraint, where 

a - - 1 - -  ~ ~ ~ / j l  (Intn s I(i))9 ~ =  2 ~ c~/jl 
i=1 j=l i=1 j=l 

Step 3 Compute the reconstruction weights: 
k 

~j = ~ C ,  (rtn. ~(n;, + z). 
i=1 

Inspired by the success of Locally Learning Embedding (LLE) csJ , the 
characterization of local geometry in the image space is equally valid for lo- 
cal patches on the manifold. In particular, the same weights wj that recon- 
struct the input neutral face image in the 96 • 128 dimensions should also 
reconstruct its embedded manifold coordinates in m dimensions. There- 
fore, we choose m-dimensional coordinates yu~tn to minimize the embedding 
cost function: 

t~r = runt -- wjY(~) 
j----1 
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where wj is obtained by the previous three steps. To obtain the optimal 

y n ~  n ^ t , we simply set er----0, and obtain yntn a s :  ~ u n  = wjY(1 )  o 
j = l  

Learn the Relationship between Neutral Facial Parameters and 
Happy Ones-in Pairs 

The facial expression parameters ynt and yhp for the neutral and the happy 

face images respectively we obtained in the previous section lie on a Euclid- 
ean subspace. In order to infer the happy face image from the neutral one, 
we need to learn the relationship between ynt and yhp (see Fig. 5 .2) .  In this 

section, we use multiple linear regression to learn this relationship: 

yhp --- ynt  ~_qL s (5-1) 

where yhp is an N X m matrix,  N is the number of face images in the train- 
ing set, and m is the number o{ facial expression parameters for happy 
faces; ynt is also an N X m  matrix; ? is an m X m matrix of parameters,  
which describes the relationship between pairs of face images that belong 
to the same person but have different facial expressions (neutral  and hap- 
py) ;  e is an N X m  matrix of random disturbances, and each of these errors 
has independent normal distribution with a zero mean and a constant variance. 

;:p 

Fig. 5.,2 The relationship between neutral facial parameters and happy ones, and we 
learn the relationship by multivariate linear regression 

Face Image Reconstruction from Low-dimensional Facial Parameters 

We reconstruct face image from low-dimensional facial parameters by in- 

verse mapping: f-1 : Y - - ~ I ,  which is learnt by supervised learning tech- 
niques. For the case of N examples, input dimensionality is m and output 
dimensionality is D (e. g. 96 X 128). The approximation of the recon- 
structed happy face image is. 

N 
^ hp hp fun = ~ eir (Yun -- ui ) (5-2) 

i=1 

where ci are vectors of weighting coefficients, r is the radial basis func- 

tion, ui are m-dimensional centers of the basis function which are defined 
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as: Ui =yhp. 
^ hp ~ Equation (5-2) can be described as IRR---Cg(yhPn), where C=[c~ ,. ,c~, 

�9 "" ,cN] is the vector of weights and g is the vector with the elements g~ = 
r (ghnP -- y/hp ). 

Matrix G can be defined as Go = r (Y  hp-Yhp) where weights Ci are ob- 
tained via solving the function c iG=l  hp. The set of weights is given by C = 
I h~G- where/hp __ E lhp  , " ' ,  l hp  , ' " ,  1 /~-]  and G- is the pseudo-inverse of G. 

The happy face image I hp is approximated by the linear combination of the 
examples lhP: 

N 

Ihn p - - / h p  G -  g (ghn~) = ~ bi (ghunP) I hp 
i=1 

where b(YhPn)=G-g(Yhpn) and bi is the column i of b. 

Inference 

Given a face image l~tn with neutral facial expression, we obtain the low-di- 
mensional parameters yu~tn. Based on equation (5-1),  we are able to obtain 
the happy parameters Yhu~. Afterwards, we reconstruct the happy face im- 

^ hp �9 age tun by inverse mapping f-x Several synthesized face images are shown 
in Fig. 5 .7(b) .  From these images, we can see that the synthesized happy 
face images look somewhat smooth, which will be improved by the local 
model in the next section. 

5 1 . 1  2 Refinement by Local Patch-based Model 

In this section, the residual face image R is generated from the original 
face image I minus the reconstructed face image I (see Fig. 5 .5 ( a ) ,  (c) for 
samples of neutral and happy residual face image). Bayesian inference is 
then utilized to infer the plausible happy residual face image. Graph cuts 
based refinement is also taken into account. 

We break the residual face image R into patches { P T i } ,  and use a 
Markov network to probabilistically model the relationships between hap- 
py and neutral residual face i m a g e ' s  
patches, and between neighboring 
happy residual face image~ s patches. 
The width and height of each patch are 
denoted as w ( P T ) ,  h(PT) respectively. 

Markov Network ' 

Markov network is used to model the 
Spatial relationship between patches. In 
Fig. 5 .3 ,  nodes are represented by cir- 
cles, and the statistical relationship be- 
tween nodes is described by edges. P T  nt 
is an observation, which denotes a patch 

r 

Fig. 5.3 Pairwise Markov network 
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in the neutral residual face image Rnt; P T  hp is a hidden variable, which is a 
patch in the happy residual face image R hp. P T  hp is what we seek to esti- 
mate. Given P T  nt , the conditional probability p(  { P T  hp } [ { P T  n' } ) is. 

n t  1 pThp p T h p ) ] - [ r  p T p , )  p ( { pThp } I { P T ,  } ) = - ~ l - [ g t o (  , , 
i ,  ( 1 )  i 

(5-3) 

where Z is a normalization constant, ~ij is the correlation function be- 
tween the neighboring patches P T  hp and P T  hp, and r is the compatible 
function between the patch P T  nt and the corresponding patch P T  hp in the 
happy residual face image, which is determined by robust optical flow. 

% and r 

For ~ 0 ,  we sample the neutral residual face image ' s  nodes so that the 
happy residual face image~ s patches overlap with each other by ol ( P T )  
pixels. The sum of squared differences Do ( P T  hp , P T  up) in their overlapped 
region should be minimized, gr 0 is defined as. 

gt o ( e r  hp , P T  hp) = exp ( _ Do ( P T  hp ,_~ PT~P) ] 
2ar \ ! 

where a2r is the Gaussian noise covariance. 
For r we find the best matched patches in the training set for an input 

neutral patch P T  .~t ,n,i. r can be defined as.. 

[ II p T n t - - p T P ; , ,  ]1 
( P T~ v , PXm- i n , / )  = exp ~ -- i 

2a~ ] (5-4)  

where a2c is also the Gaussian noise covariance, and 11 �9 1[ denotes Euclid- 
ean distance. 

Fig. 5.4 describes the computation of equation (5-4). For patches PT[~tn,i 

input neutral face image, we find the best matched patches PT'~ t of neutral 
face images in the training set. Then we use robust dense optical flow to 
find the corresponding patches P T  hp of happy residual face images in the 
training set. These patches are candidate scene patches for p ThPu,,i, which 
is the final hallucinated patch for the residual happy face image. Since opti- 
cal flow is pixel-based, we down-sample the neutral residual face images 
and happy ones in the training set. Thus each patch in the original residual 
face images is translated to the corresponding pixel in the down-sampled 
images. Robust dense optical flow is then carried out on pairs of the down- 
sampled neutral /happy residual face images in the training set (see Fig. 5. 
5). We set a2c to allow about six candidates within one standard deviation 
for each patch of the input neutral residual face image. 
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1. Patch-based 
best match 
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An input neutral Ha ~py residual candidate 

/residual face i m a g e  face.image to be// 
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Neutral residual face 
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'I 
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Fig. 5.4 Diagram of belief propagation for happy residual face image inference 

(a) Neutral residual (b) Robust optical flow field (c) Happy residual 
face image (horizontal and vertical) face image 

Fig. 5.5 Optical flow between the neutral and happy residual face images 

Learn the Happy Residual Face Image by Belief Propagas 

We need to find PTout,ihP that  maximizes P({  PTout,ihp } i {pTntin,/}) in equation 
(5-3) Exact  maximization of p ( { P  hp pTnt  �9 Tout,/}l{ in,i }) is NP hard,  but belief 
propagat ion E67 has been successfully utilized in probabilistic graph model. 
In belief propagat ion,  each node sends a message to all the neighboring 
nodes. The  message from node i to node j is defined as. 

mo (pThop.,,J) = ~ ~o  ( hp hp hp pTnt  PTout , i  , PTout4 ) r ( PTout,i , in,i ) pTh2., 
H m~ (PToh:t,i) 

kff NB( i)/j 

where N B ( i )  denotes the neighboring nodes of node i. 
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The sum is over all patch candidates pThoPu,,i at node i. The product is 
over all neighbors of the sending node i except the receiving node j. After 
several iterations, the Markov network gets converged, and then the mar- 
ginal probability Bi for each happy residual face image ' s  patch hp PTout,i at 
each node i is. 

Bi ( PT  up ) C~ ( hp prnt I I  hp = PTout, ) PZout,i in,/) mji ( i out, i i 
jE  NB(i) 

where c is a normalization constant. 
hp Then the optimal PT"o~t,i at node i is PTo,,t,i=arg max B~ (PT"o~t,i). 

PTh~,., 

We can integrate the optimal residue patches together and form the op- 
timal residue face image. The optimal residual face image plus the results 
of manifold inference is the final hallucinated happy face image, as is 
shown in Fig. 5.7 (c). 

Refinement by Graph Cuts 

The graph cuts algorithm is not conflicting with belief propagation. The 
output of belief propagation, i. e. , the happy residual face image is patch- 
based, and patches overlap with each other. The graph cuts algorithm can 
be utilized to find the best beam for the neighboring patches (see Fig. 5. 
6). We utilize the source code provided by Boykov, et al. ET? to find the op- 
timal beam for neighboring patches. 

Fig. 5.6 The overlapped region is optimally separated by graph cuts algorithm 

5.1.1.3 Experimental Results 

We have built a prototype system to implement the algorithms in this sec- 
tion by Visual C-+--+- and Matlab. Neutral and happy face images in the 
AR Ea? face database are used as the source of our test face images. 300 face 
images of 150 different persons are selected as the training set, and other 
30 images as the test data. We first need to crop the original face images to 
a size of 96 • 128 pixels. Then we mark five points in every face: center 
of eyes, top of nose, and corners of mouth,  and then use affine transform 
to adjust the face images which ensure a rough correspondence among fa- 
cial features of different faces. All the test face images are not included in 



5 Video-based Facial Animation Techniques 129 

the training set. 
In global manifold learning/inference, we use ISOMAP to nonlinearly 

reduce the dimensionality to 18, accounting for 96% of the total variance. 
In local patch-based Markov network learning/inference, we choose w(PT)= 
h ( P T ) = 5  as the patch size and o l ( P T ) = 2  as the overlapping size in our 
experiments. 

Fig. 5.7 shows the experimental results. Using manifold learning and 
inference, we reconstruct the happy face images for input neutral ones. 
From Fig. 5.7 ( b ) ,  it can be seen that manifold learning 's  reconstruction 
results are a little smooth. Then in the second step, Markov network 
based local low-level learning is carried out to make the happy face images 
more expressive (see Fig. 5.7 (c)) .  

(a) 

(b) 

(c) 

(d) 

Fig. 5.7 The results of hallucinated happy facial expressions. (a) The input neutral 
face images; (b) The preliminary results of manifold learning and inference; 
(c) The final results enhanced by belief propagation and graph cuts; (d) 
The ground-truth face images with happy facial expression 
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For a new input image with neutral expression, the person~s teeth can- 
not be seen. Our algorithm can render his /her  teeth on expressive face im- 
age, as shown in Fig. 5.8. The teeth on these images look different from 
person to person, and the differences come from two reasons. One is mani- 
fold-based reconstruction, and the other is local Markov network infer- 
ence. For manifold learning, each face image can be thought as one point 
in a high-dimensional space. Actually, there are two nonlinear manifolds: 
one is for neutral face images, and the other is for happy ones. A neutral 
face image is a point lying on the neutral manifold, and this also holds for 
a happy one. Since the neutral and happy face images are in pairs, the two 
corresponding points are in pairs too. We can seek the relationships among 
the pairs. If given two different neutral points, you will get two different 
happy points. Therefore,  even for unseen facial features, e. g. teeth, we 
can generate different results for different input neutral face images. For 
Markov network learning, it further enhances the low-level features in the 
happy face images. 

(a) Input neutral (b) Results of (c) Results enhanced (d) Ground-truth 
face images manifold learning by local patch-based happy face images 

Fig. 5.8 For different person~s unseen facial parts (e. g. teeth), the hallucinated 
happy face images are different too 

^ hp The runtime of computing fun by manifold learning/inference is about 3 
seconds, and the refinement by belief propagation and graph cuts takes a- 
bout 2 seconds on a PentiumIV 1.8 GHz CPU with 256 MB RAM. 

In this section, we introduce a two-step facial expression hallucination 
approach based on sample learning. First ,  nonlinear manifold learning is 
used to estimate the preliminary smooth facial expression image, then the 
local details are refined by patch-based belief propagation algorithm. Cur- 
rently we only show the results for gray-scale images, and it is easy to ex- 
tend our algorithm for color images. 
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5 . 1 . 2  Video-based Facial Expression Hallucination 

According to the above discussion, facial expression hallucination is an im- 
portant approach to synthesizing {acial expression. Existing hallucination 
approaches are image-based, i. e. , synthesize specific facial expression im- 
age given an input face image with neutral {acial expression. In this sec- 
tion, we propose a novel two-level video-based facial expression hallucina- 
tion approach. Compared with existing works, the novelty mainly lies on 
two aspects: (1) We synthesize a dynamic expression video sequence in- 
stead of a static face image; (2) The approach is a fusion of local linear 
subspace learning and global nonlinear subspace learning, and provides a 
reasonable way to organize and represent the complex video sample space. 

According to the two-level fusion framework, the local subspace learn- 
ing adopts eigen-representation technique to compress video sequences in 
temporal domain, while the global subspace learning synthesizes the opti- 
mized facial expression in spatial domain. We will discuss the proposed 
video-based facial expression hallucination approach in detail in the follow- 
ing part. 

5.1.2.1 Face Interest Region 

Not all facial organs play important role in 
facial expression, and the eyes and mouth 
are more attractive in {ace to face communi- 
cations. Thus in computer aided facial ex- 
pression synthesis, we pay more attention 
to the regions near eyes and mouth, which 
are named as "face interest region" and can 
be described as the two rectangles in 
Fig. 5.9. 

Human face is a complex non-rigid sur- Fig. 5.9 Face interest region 
face, and it is difficult to model the whole 
face during facial expression, so we just focus on the face interest region. 
Thus a preprocess is needed to segment face interest regions frame by 
frame from the training video sequences. Segmentation is a classical and 
popular topic in digital image processing, and existing approaches mainly 
include: segmentation based on the gray-scale value of image pixels, seg- 
mentation based on the edge detection, and region growth algorithm. Di{- 
{erent algorithms have different characteristics, but no algorithm is effec- 
tive under arbitrary conditions. Furthermore, the segmentation results by 
the algorithms cannot be used as samples directly without normalization. 
So we employ simpler manual work to segment the interest region. First, 
find the position of pupils in an image, then move to four directions (up, 
down, left, right) by proper distances from the pupils, and we get the rec- 
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tangular region around the eyes, this is the eye interest region. Second, 
we can determine the mouth area according to the position of pupils based 
on the topology of human facial organs. This is done by first determining 
the center of mouth interest region. The segmented human face interest 
regions are shown in Fig. 5.10. 

Fig. 5.10 Face interest regions of sample faces 

5.1 .2 .2  Two-level Hierarchical Fusion Framework 

The training samples comprise tens of video clips, and each video clip re- 
presents one kind of facial expression of a specific person from neutral to a- 
pex. Our goal is to hallucinate expression video sequences of a new test 
subject based on sample videos, and the input is a single frontal face image 
with neutral expression. 

Due to the high-dimensionality of video samples, organizing the sample 
space well becomes a challenging problem. Here, we propose a hierarchi- 
cal approach to perform training and synthesizing, which includes two lev- 
els: local linear subspace learning and global nonlinear subspace learning. 

Local Linear Subspace Learning 

In this level, each training sample (a video sequence) is considered to con- 
struct a local linear subspace. Principal Component Analysis (PCA) has 
been proved effective in learning such a linear subspace. So, in this level, 
we use PCA to compute eigen-representation of each sample offline for fur- 
ther use. 
Step 1 Given a video sequence, we stack columns of each frame into one 

vector and integrate all the vectors to form a sample matrix X. 

Step 2 Compute X =  ( X - - Y i ) / v / - N  to register X, where X is the mean 
value and N is the number of samples. To deal with the problem 
caused by high-dimensionality, we perform QR factorization to 
gain I-q, r-] = QR (X) ,  then Singular Value Decomposition (SVD) 
is imposed on r to get [ u , s , v - ] = S V D ( r ) ,  and then eigenvectors 
can be obtained by U = q  �9 u ,  we do so for solving the problem in a 
numerically stable way. 

Step 3 Thus,  we can project any frame f on U to get the reconstruction 
coefficients y = U  T �9 ( f - - Y i ) ,  and f can be reconstructed by f - -  
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U ~ y n L X .  So, we store each sample 's  eigenvectors U, coefficients 
y and mean value X as the eigen-representation {or expression syn- 
thesis. 

Global Nonl inear Subspace Learning 

In global nonlinear subspace learning, given an input face image with neu- 
tral expression as a high-dimensional data point, we aim at finding its nea- 
rest k neighbors among the first frames (neutral) of the video samples by 
Locally Learning Embedding (LLE) algorithm Eg?. LLE is an unsupervised 
manifold learning algorithm that computes low-dimensional, neighborhood 
preserving embeddings of high-dimensional input and recovers the global 
nonlinear structure from locally linear fits. According to LLE, each high- 
dimensional data point can be reconstructed by weighted linear combination 
o{ its neighbors. The reconstruction weights reflect intrinsic geometric 
properties of the data that are invariant when high-dimensional data points 
are transformed to low-dimensional coordinates. The process of LLE algo- 
rithm can be briefly described as three steps listed below. 
Step 1 Find k neighbors for each sample data. Selecting K-closest neigh- 

bors for each point using a distance measure such as the Euclidean 
distance. Solving for the manifold reconstruction weights. The re- 
construction errors are measured by the cost {unction. 

N N 

= II x , -  ~wijxij II 
~=1 j = l  

where X~ is a data point and e(w) is the sum of the squared dis- 

tances between all data points and their reconstruction neighbors. 
The weights W0 represent the contribution of the j th  data onto the 

ith reconstruction. Two constraints should be obeyed. ~ Wu = 

1, W0 --0 if Xj is not a neighbor of Xi. The weights are then de- 
termined by a least squares minimization of the reconstruction er- 
rors. To solve the weights, we need to construct a local covari- 
ance matrix Q~ as Q~m = (X~ - Xu ) T (X~ - -  X~, ).  Combine this equa- 

tion with ~ W o = l ,  the local optimal reconstruction weight ma- 

trix can be obtained as. 

Wj --- ~(Qi)--I/2 ~ J,~ (Q,);1 . 
m=l  / p = l  q=l  

In practical computation, Qi may be a singular matrix, thus a 
normalization process should be adopted to ensure the positive def- 
inite property which can be described as Qi = Q ~ +  r l ,  where r is 
the normalization parameter and l is a K N K unitary matrix. 

Step 2 Mapping each high-dimensional data to a low-dimensional coordi- 
nate. This is done by minimizing the cost function representing lo- 
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cally linear reconstruction errors: 
N N 

i = I  j----1 

where ~(Y) is the reconstruction error, Yi is the low-dimensional 
coordinate corresponding to Xi, Y0 is K-nearest neighbors of Yi, 

N N 

2 1 ~lYiYT i =I i=x Y - -  O , -]~ i= 

where I is an m)< m unitary matrix, w} ( i =  1 , ' . . ,  N) can be stored 
in an NX N sparse matrix W, when X 0 is a neighbor of X~, W 0 = 
w~, else W 0 =0.  We rewrite the error function as: 

N N 

min e(Y) = ~ ~2 M0r?r~ 
i----1 j = l  

where M =  ( I - -W)T (I__W) is a symmetry matrix. To minimize 
the error function, Y is selected as m eigenvectors corresponding 
to the smallest m non-zero eigenvalues of M. Actually, the first 
eigenvalue is almost zero, so we omit it and choose the eigenvectors 
corresponding to the eigenvalues with the order from 2 to m +  1. 

After LLE implementation, we gain the low-dimensional coordinates of 
both the neighbor samples and the input image, then expression sequence 
synthesis can be performed based on the low-dimensional coordinates and 
corresponding eigen-representations, which have been computed through 
local linear subspace learning. Indeed, the two-level hierarchicM approach 
is a fusion of nonlinear and linear subspace learning, where the local level 
aims at simplifying the video hallucination by eigen-representation in tem- 
poral domain, while the global level contributes to providing the optimized 
expression appearance in spatial domain. The detailed expression synthesis 
procedure will be discussed in the next section. 

5.1.2.3 Video-based Dynamic Facial Expression Hallucination 

Our proposed hierarchical fusion approach performs the local linear learn- 
ing offline only once, while the global nonlinear learning is performed each 
time when a test subject comes. The proposed approach includes three 
steps. 
Step,l Let/in be the input subject image and LF be the first frames of N 

training samples, we integrate Ln and Itr into one matrix form 
(each image can be stacked into one column vector and the matrix 
is composed of N +  1 vectors). 

Step 2 Find the N-nearest neighbors of/in in Itr by LLE, also, the recon- 
struction weights as well as the low-dimensional manifold coordi- 
nates g i n  and Ytr Of these images are simultaneously compu ted ,  
here Yin corresponds to /in and Ytr corresponds to Itr. The low-di- 



5 Video-based Facial Animation Techniques 135 

mensional coordinates of Fin's N-nearest neighbors can be denoted 
as  Y~b. 

Step 3 Since the eigenvectors U, coefficients 5' and mean value X of each 
video sample have been computed through local level learning, we 
choose U~b, Ynb, Xnb ( t h e  eigen-representations) of those nearest 
neighbors Ynb and as training data to synthesize the eigenvectors 
Ui., coefficients Y~n and mean value X~n of the expression sequence 
corresponding to the input image Ln. According to PCA rationale, 
the eigen-representation is adequate to represent a local linear sub- 
space. Thus, arbitrary frame fi~ in the video sequence correspond- 
ing to image/in can be reconstructed as f in--Uin " Yin-3l-Xin accord- 
ing to PCA theory. 

In Step 3, the correspondence between the eigen-representations and 
the low-dimensional coordinates are simulated by a Radial Basis Function 
(RBF) regression. The RBF regression function takes the form: 

k 

rt - -  ~o -3 L 2 ~ i K  (Xt '#i) 
i = 1  

where x, E R d and r, E R are input training data, j~= (t30 ,"" ,/2k) E W +1 is a 
vector of regression coefficients. K is a local kernel function centered on 
/~E R d. In order to simplify the regression problem, we first perform K- 
NN clustering algorithm on input training data x, and assign the kernel 
function centers # to be the clustering centers. Suppose r't ,  Xt as well as 
the kernel function K are available, the regression parameter j~= (~0 , ' " ,  
/2k) E R k+~ can be solved by a standard least squares algorithm. 

In our implementation, x, is the neighbors'  low-dimensional coordi- 
nates Ynb, and r, is the neighbors' eigen-representation which takes the 
fo rm: r ,=  (U.b ,Yah ,Xnb ). After ,8 is calculated, given Y~n as input, the eig- 
envectors Ui., coefficients Yi. and mean value Xin of the expression sequence 
corresponding to the input image are synthesized. So according to PCA 
theory, the new expression sequence corresponding to the input neutral 
face can be reconstructed frame by frame through: 

f = U i n  ~ Yin -+-Xin 

5.1.2.4 Facial Expression Video Database 

Existing Face Database 

There already exist some face databases for the purpose of scientific re- 
search. The representative databases include: FERET database, XM2VTS 
database, Yale database, AR database, MIT database, ORL database and 
PIE face database. Now we will introduce the databases in brief. 

FERET database: most widely used face database, created by FERET 
project, comprises of 14,051 face images with multiple poses and illumina- 
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tion conditions. Most people in the database are Caucasian. 
XM2VTS database, includes images, audio and video sequences of 295 

participants captured at different times. Every time for each participant, 2 
video clips with different head rotation and 6 audio video sequences are 
captured. In addition, the 3D models of 293 people are available. 

Yale database: constructed by the computer vision and control center of 
Yale University, and includes 165 images of 15 volunteers with illumina- 
tion, expression and pose variations. The illumination and pose condition 
are strictly controlled so as to facilitate the modeling and analysis of illumi- 
nation and pose change. 

AR database., created by the computer vision center of Barcelona, and 
includes 3,288 images of 116 people. The camera parameters and illumina- 
tion condition are under strict control. 

MIT database, constructed by the media lab of MIT,  includes 2,592 im- 
ages from 16 volunteers with variant pose, illumination and scale. 

ORL database: built by ATILT Lab of Cambridge, includes 400 face 
images of 40 people. The images of some volunteers were captured under 
different pose, expression and facial decoration. ORL was often used in 
early period of face recognition research, however, due to the small data 
quantity, ORL becomes unpractical in recent years. 

PIE database: created by CMU, comprises 41,368 images of 68 volun- 
teers with multiple pose, illumination and facial expression. The illumina- 
tion and pose conditions are rigidly controlled. 

Above discussion indicates that most face databases include face images 
with different pose, illumination and facial expression. However,  the sam- 
ple images are all in gray-scale manner and video samples rarely appear in 
these databases. Therefore, it is necessary to set up our own facial expres- 
sion video database according to the requirement of application. 

Facial Expression Video Database 

To capture the facial expression video samples, we use a Sony HDV 1080i 
video camera recorder, and the video frame resolution amounts to 
19,201,080. To ensure good performance, the actors are informed to per- 
form multiple expressions from neutral to apex with no rigid movements of 
the head in a room with average illumination. The distance between human 
face and the camera is fixed at 2 meters with known camera inner parame- 
ters. 

Our facial expression database includes 232 video sequences covering 4 
kinds of typical expressions (happy,  angry, surprise, fear) coming from 
58 individuals, each video sequence is normalized to 20 video frames. Since 
the most sensitive parts of a human face are the eyes and the mouth,  we 
separate the faces in 4,640 video frames (232 videos and 20 frames per vid- 
eo sequence) manually into eye and mouth interest regions and treat them 
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respectively during training and synthesizing. The methods for hallucina- 
ting the eyes and the mouth are totally identical. 

5 .1 .2 .5  Results and Discussions 

After the dynamical sequence of eyes and mouths are synthesized through 
the proposed approach, the synthesized face interest regions are transplan- 
ted onto the input image manually to form the dynamic facial expression 
sequence. When extracting the face interest regions of the sample videos in 
training process, we have labeled the positions of pupils manually, so we 
just need to mark out the pupils of input face, and align the input face im- 
age with the synthesized eye interest regions according to the positions of 
pupils. The mouth interest region can be treated in a similar way, while 
the mouth position of the input face image can be obtained according to the 
pupils' positions based on the facial organ topology. In this way, we can 
achieve reasonable fusion of input face image and synthesized face interest 
regions. To deal with the 24 bit true color video frames, our approach is 
applied on the R, G, B channels respectively, and the final results are the 
integration of the three channels. To testify the efficacy of our approach, 
an arbitrary face image with neutral expression is selected from the data- 
base as input face image, and other sample videos are used to synthesize 
expression video sequences with 20 frames each. The hallucination process 
takes no more than 10 seconds in a PentiumIV 2.4 GHz CPU With 1 G 
RAM. We perform the "cross validation" process (randomly pick one out 
of training data) 10 times and part of the experimental results are demon- 
strated in Figs. 5. 11--5. 14. In each figure, the first row is the ground 
truth facial expression sequence, and the second row is the hallucinated fa- 
cial expression sequence. 

Of course, besides RBF, there is other way to synthesize facial expres- 

Fig. 5.11 The ground truth and the hallucinated angry expression 
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Fig. 5.12 The ground truth and the hallucinated happy expression 

Fig. 5.13 The ground truth and the hallucinated surprise expression 

sion sequences given sample data. Remember that in Step 2 of section 
"Video-based Dynamic Facial Expression Hallucination", LLE algorithm 
obtains not only K-closest neighbors of input face image, but also the 
weights for the neighbors used to reconstruct the input image through line- 
ar combination. Compared with the linear combination approach, the RBF 
regression approach proposed in this section maintains more high frequency 
information, see Fig. 5.15. 

Through the global nonlinear learning, we have computed the low-di- 
mensional coordinates of the input subject and the training samples. It is 
proved that two {actors may influence the final hallucination results, i. e. 
the neighborhood size of LLE and the dimensionality of the low-dimension- 
al coordinates. The average Root Mean Square (RMS) error of 10 cross 
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Fig. 5. 14 Also the ground truth and the hallucinated surprise expression 

(a) (b) 

Fig. 5 .15 (a) Hallucination result by RBF regression; (b) Hallucination result by 
linear combination. The right side of either (a) or (b) is the magnified eye 
region. Note that near the region of the circle, the result by weighted line- 
ar combination method looks smoother than the RBF regression approach 

validation tests using different neighborhood size and dimensionality are 
shown in Figs. 5.16 and Fig. 5.17. The RMS error is computed according 
to the only input original image and the first {rame of the hallucinated ex- 
pression sequences. We compare the RMS error of our approach with that 
of the weighted linear combination method and verify the superiority o{ our 
approach. 

Fig. 5.16 indicates that the RMS error is very unstable when the neigh- 
borhood size is less than 8. We adjust the neighborhood size empirically, 
when the neighborhood size is between 8 and 17, the RMS error remains 
relatively stable at lower values, when the neighborhood size surpasses 17, 
the RMS error rises dramatically. Fig. 5.17 shows that in global LLE 
learning, when the dimensionality of the low-dimensional coordinates is 
between 8 and 16, the mean RMS error remains at lower values, other- 
wise, the RMS error rises dramatically. 

Though the neighborhood size and the dimensionality of the low-dimen- 
sional coordinates do influence the hallucination results,  there lacks perfect 
approach to determine these parameters automatically. In many applica- 
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tions, these parameters are determined empirically according to different 
cases. In our experiments, the neighborhood size and the dimensionality of 
the low-dimensional coordinates are fixed at 11 and 9, respectively. 

In this section, we present a novel two-level hierarchical fusion ap- 
proach to hallucinate facial expression sequences from training video sam- 
ples given only one frontal face image with neutral expression. According 
to the fusion approach, the local linear subspace learning is combined with 
the global nonlinear subspace learning, the local level simplifies the video 
hallucination by eigen-representation of the samples in temporal domain, 
and the global level creates the optimized expression appearance in spatial 
domain. The two-level hierarchical fusion approach provides a sound solu- 
tion to the problem of organizing the complex training video sample space, 
and this is the main contribution of our work. Our approach generates rea- 
sonable facial expression sequences with little artifact compared with existing 
methods. 
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5 .2  Video-based Facial Expression Capture 

Tracking for multiple facial features is a challenging and important topic in 
computer vision area. Kass, et al. proposed Snakes (Active Contour Mod- 
el) to track the contour of lips. Snakes are energy-minimizing splines 
guided by constraints. They can be used to obtain smooth feature con- 
tours. But when the total number of control points is large (e. g. dozen), 
the dimensionality is too high, which will decrease the tracking efficiency. 
Furthermore, allowing arbitrary variation in positions ot? control points o- 
ver time will lead to instability in tracking. Cootes, et al. El0? proposed the 
ASM/AAM algorithms, in which tracking is based on face detection and 
recognition. However the tracking results depend on the model ' s  initial 
position and the variations contained in the training set, which makes it 
difficult to deal with occlusions. Furthermore, during the training, broken 
line is used to mark the facial features, which is not smooth. Current facial 
feature tracking approaches are mainly based on single feature. Multiple 
facial feature tracking faces the problems of both global rigid motion and 
local facial features' non-rigid motion, so multiple feature tracking is more 
difficult. The non-rigid motion of facial features is rapid, and the motion 
of multiple features will interfere with each other. Kalman filter based 
tracking is inadequate because it is based on Gaussian probability distribu- 
tion. The probability density of facial feature is a mixture of several distri- 
butions rather than single Gaussian in case of interference. 

Thus, in this section, we will discuss two kinds of approaches for mul- 
tiple facial feature tracking. 

5 .2 .1  Multiple Facial Feature Tracking Based on Bayesian Network 
Enhanced Prediction Model 

The algorithm can be described as the following steps in brief. 
Step 1 Choose the B-spline to describe the feature's contour. B-spline is 

smooth and better than broken line, since the contour of facial fea- 
ture is also smooth. 

Step 2 Utilize PCA to reduce dimensionality for each facial feature. Therefore 
unplausible contours are eliminated by subspace method. 

Step 3 Propose a multi-cue based prediction model. 
(1) First, use low-level feature based face tracking algorithm (Mean- 

shift) to give an estimation of the face's position. Therefore the 
search space for observation model is narrowed down. 

(2) Multiple facial features are tracked simultaneously, and the spatial 
constraint among facial features is also taken into account. 

(3) We learn the second-order Auto Regressive Process (ARP) based 
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dynamic model for each facial feature. 
(4) We use graphical model Bayesian network to enhance the ARP 

based dynamic model. The Bayesian network in this section com- 
bines the influence on a facial feature in the current time instant 
contributed by multiple facial Ieatures in the previous time in- 
stant. In this way, it is more robust than tracking each facial fea- 
ture independently. We integrate all the above prediction models 
as multi-cues into the prediction model of Kalman filter. 

Step 4 Finally, the prediction and observation model make up the Kalman 
filter framework in the standard way. 

5.2 .1 .1  Representation of Facial Feature's Contour 

We track the contours of facial features, and use B-spline (x (u,  t ) ,  y (u,  
t ))  to represent facial fea ture ' s  contour in time instant t. Suppose there 

are N spans and Nc control points, we have 

x(u , t )  - - B ( u ) C  ~ ( t ) ,  y(u , t )  =B(u)C ~ (t) ( O ~ u ~ N )  (5-5) 

where C ~ = [ C ~ , " ' ,  C~v ix are the x coordinates for all control points in 

time instant t, and C y are the y coordinates. To closed curves, the number 

of control points equals that of the spans: Nc = N,  while to open curves, 
Nc=N- t -d .  Vector B is the blending parameter: 

B ( u )  = [B1 ( u ) , B 2 ( u ) , " ' , B N  (u) ]  (5-6) 
c 

where Bi(u) is the basis function of the B-spline. The control points of B- 

spline composite a spline vector C(t)=[C~(t) ,CY(t)]  w. 
The B-splines that represent facial features are shown in Fig. 5. 18, 

where the contour of eyebrow is the upper edge of eyebrow~ the contour of 
eye is the boundary between eyelid and eyeball, excluding the eyelid; the 
contour of nose is the border between nose and the skin of face; and the 
contour of mouth is the edges of upper and lower lips. 

If we manipulate the control po in t ' s  positions arbitrarily, it is easy to 
generate a spline that does not look like facial feature 's  contour (see Fig. 
5.19) .  Therefore arbitrarily manipulating the control points may lead to 
tracking failure. 

5 .2 .1 .2  Dimensionality Reduction for Contour of Facial Feature 

The movement of facial feature can be decomposed into two parts, rigid 

motion and non-rigid motion. The rigid motion is caused by the motion of 
head, while the non-rigid one is the motion of each facial feature that 
caused by facial expressions. Facial features (eyes,  eyebrows, nose, 
mouth) are generally in the same plane. When a rigid motion of head oc- 
curs, the contour of facial feature has six degrees of freedom (DOF). For 
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Fig. 5.18 The facial feature contour re- Fig. 5.19 The results of arbitrarily ma- 
presented by B-spline nipulating spline vectors 

the non-rigid motion ot? a facial feature, we carry out PCA for the contour 
of facial feature in the training face image sequence. Suppose the dimen- 
sionality of non-rigid motion is reduced to Nnr, and then the total dimen- 
sionality of all facial features is 6 Jr- Nnr. Let s, denote the parameters of 
state space after the dimensionality reduction, the spline vector C( t )  can 
be written as.. 

C(t) =Wst nLCo (5-7) 

where W is a N~ X N, shape matrix. Nc denotes the DOF before dimension- 

ality reduction, and N~=2N,. N, denotes the dimensionality after dimen- 
sionality reduction, and N, = 6n LN.,. Co is the template of contour, which 
is usually obtained by manually marking. During tracking, it is not proper 
to allow arbitrary change of control points. When dealing with non-rigid 
motion, Snake tracking lacks robustness with too many degrees of free- 
dom. 

5 .2 .1 .3  Multi-Cue Based Prediction Model 

Second Order Auto Regressive Process Based Prediction Model 

The motion ot? a facial feature 's  contour can be modeled by a noise driven 
second-order ARP,  which can be shown as the following second-order line- 
ar differential equation: 

st--A2st-2 -t-Aist-1 +Do +Bow, (5-8) 

where A1, Az and B0 are matrices, A1 and A2 are the deterministic parame- 

ters,  and B0 is the stochastic parameter. Do denotes a fixed of{set, and the 
distribution of each component of w, belongs to i. i. d. Gaussian noise. Let 

X,=[S,_l ,s,-] r ,  then equation (5-8) can be written as. 

X, =Ax,_I nLDnLBw, (5-9) 

where 
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E ~ '1 [~ E~ A =  Az A1 ' D =  Do , B =  Bo ' 

and I is an identity matrix. From equation (5-9) ,  we can see that X, only 
depends on X,-1 in the previous time instant. Therefore the dynamic model 
for one facial feature is actually a Markov chain. But this model d o e s n ' t  
consider the relationship among facial features. Since second-order ARP 
can describe constant velocity motion, decay and damped oscillation, we 
use it as the plausible dynamic model for each facial feature. 

In the second-order ARP dynamic model (see equation (5 -9 ) ) ,  the pa- 
rameters  A ,  D and B are unknown. Although it is possible to specify the 
parameters empirically, it is more convincible to estimate these parameters 
from training image sequences. In this section, we choose a bootstrapping 
strategy to learn the parameters for the dynamic model. 

First ly,  we build the dynamic model according to the pre-assigned pa- 
rameters empirically, and track the simple and slow facial motion feature, 
thus a sequence of motion feature X l , " ' , X  1 can be obtained in training 
process, where M is the number of frames in training video. Given X), the 
solution to A ,  D and B is a standard Expectation Maximization ( E M )  
problem. Supposing the initial parameters gained by EM training are A 1 , 

D1 and B 1  a new dynamic model can be built using these parameters,  and 
the refinement of tracking is done based on the new model. Generally 
speaking, 2 to 3 iterations are enough to generate an effective dynamic 
model. 

According to the Markov property of the dynamic model, if the track- 
ing results of two time points are known as s,-2 and s,-1, the state space of 
feature contour at current time point can be estimated as s, according to e- 
quations (5-8) and (5-9). Equation (5-7) indicates that there exists a cor- 
respondence between s, and C ( t ) ,  i . e . ,  we can obtain the face contour 
C( t )based  on the state space s,. 

Using Graphical Model 1:o Model the Relationship among Facial Features 

The dynamic model in the previous section is for one facial feature, and we 
can build several dynamic models, each for one different facial feature. 
The multiple independent ARP model based tracking method for multiple 
facial features tends to fail in multiple feature tracking, since the inter-re- 
lationships among facial features are not taken into account. Actually, the 
motions of each facial feature relate to each other. For example, when one 
frowns, his eyes will become smaller; when one surprises with wide open 
mouth,  the eyebrows will move up. It is difficult to describe this kind of 
inter-relationship deterministically. In this section, we use probabilistic 
graphical model--Bayesian network to describe it non-parametrically. 

�9 Bayesian Network Bayesian network is a Directed Acyclic Graph 

(DAG).  The Bayesian network used in this section is shown in Fig. 5.20, 
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Fig. 5 .20 Bayesian network based dynamic model for multiple facial feature predic- 
tion 

where the filled circle denotes observation node, and the empty circle 
denotes hidden node. The directed edge represents the statistical de- 
pendency between two nodes, and the direction is from the parent 
node to the child node. The intuitive meaning of Fig. 5.20 is that we 
can predict the current position of mouth ' s  contour on condition that 
we have already known the positions of each facial feature 's  contours 
in the previous time instant. 
Bayesian Network Based Dynamic Model We utilize Bayesian infer- 

ence to calculate the marginal probability p(s,, ,  ] {Si,t--1 }N--1 ). For mul- 
tiple facial feature tracking, the intuitive meaning is to predict the 
contour state parameter sj,~ in current time instant t on condition that 
each facial f ea tu re ' s  contour state parameters {s/,,_~ }/N=~ are already 
known. The result of prediction is s,,~ that maximizes the marginal 
probability: 

Sj,t-- arg max p (s,,, [ {Si,t--1 }Ni=I ) ( 5 - 1 0 )  
Ss. 

Generally, the Bayesian model based dynamic model cannot be decom- 
posed except that s1,,-1, "'", si,,-~, "" ,  sN,,-i are mutually independent 
on condition of sj,,. But we could use equation (5-11) to approximate 
the joint marginal probability. 

N 
P (SJ't [ { Si't--1 } Ni--1 ) = 2 p ( sj't [ Si't--1 ) ( 5 - 1 1 )  

i=1 

Training Bayesian Network Based Dynamic Model Different from 

the parametric second-order ARP based dynamic model p (st,, [ 
{si,t-1} N~=~') , Bayesian network based dynamic model is non-paramet- 
rical. In order to solve the non-parametric dynamic model, the key 
point is to calculate p(s~,, [s~,,-1), From the conditional probability 
theorem, we have: 

p(sj,,  [ Si,t-- 1 ) - - -p(s j , t  ,Si,t--1 )/P($i,t--1 ) ( 5 - 1 2 )  

where p(s,,, ,s~,,-1 ) is joint probability, and p(s~,,_l ) is the probabili- 
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ty of facial feature i in the previous time instant. From the training 
data,  we fit the mixtures of Gaussians to p(s , ,~ ,s i , , -1)  and p(sj ,~) .  
We can obtain p (sj,~ ]si, ,-~) by evaluating equation (5 -12) .  The 
sketch maps of p(sj,~ ,si,,-1 ) and p(si,~-i ) are shown in Figs. 5.21 and 5. 
22 respectively. 
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Fig. 5.21 Sketch map of P(sj,t, Si,t--1 ) 
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Using Bayesian Network  Based Dynamic Model to Predict Contour  of 

Feature  On condition that  the facial feature i ' s  state parameter  si,,-i 
is equal to ~i,,-1 in the previous time instant ,  we can predict the state 

of facial feature j based on equations ( 5 - 1 0 ) - - ( 5 - 1 2 ) .  

N 

sj,, ----- arg maxp( s j , ,  I { ~ i , t - - 1 } N - - 1 )  - - -  arg m a x H p ( s j , ,  [ ~j~,~-a) 
s,. ' s i = 1 

N 

= arg maxI-[P(s~,,,l~i,~l)/p(~i,~_l) (5-13) 
~., i =  1 

When si,,-~ = ~ji,,-~, p (s~,,, Si,t-- 1 ) IS, .... = ~  ..... is single variable M O G ,  

its one-dimensional sketch map is shown in Fig. 5.23. From equation 
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(5-13) ,  we know that we need to calculate the maximum of the prod- 

uct of N MOGs. Since it is difficult to obtain the maximum directly, 
practically approximative methods are used, e . g . ,  starting from an 
arbitrary point, use  gradient descent algorithm to obtain the local 
maximum; utilizing discretization, draw n s  samples, then find the 
maximum probability of them. We tend to use the latter method, 
since the global maximum can be obtained. 

Low-level Feature Based Face Tracking in Advance 

The second order ARP based dynamic model is used for each facial feature, 

not for the whole face. To avoid the tracked facial fea ture ' s  contour drif- 

ting out o{ the face, it is necessary to track the whole face firstly. There- 
fore we could narrow down the search range for the facial feature tracking. 

Here we use color histogram based Meanshift algorithm to track the 

whole face, and obtain the location of human face (see Fig. 5 . 2 4 ( a ) ,  (b ) ) .  
By this means, we set a search range for the observation model of facial 
feature tracking. Since observation is the most time-consuming part of the 
facial feature tracking, narrowing down the search range makes the track- 
ing more efficient. Meanshift tracking algorithm can also be used to obtain 

(a) (b) 

Fig. 5 .24  

(c) (d) 

Meanshift algorithm is used to obtain the face's position and orientation. 
(a) One frame contains the frontal face~ (b) The probabilistic distribution 

map of face, and the tracked face area is shown in the ellipse~ (c) One 
frame contains the face with orientation~ (d) The probabilistic distribution 
map of face, and the across approximately gives the face's orientation 
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the orientation of face (see Fig. 5 . 2 4 ( c ) , ( d ) ) ,  and this makes preparation 
for spatial constraint in the following section. 

In the experiments, the training for dynamic model was carried out for 
frontal faces. When the tracked face has orientation, we use Meanshift al- 
gorithm to approximately get its orientation, and then warp the face image 
into the canonical position. We do the facial feature tracking on the canoni- 
cal face, and undo the warping after tracking for graphical display. 

Spatial Constraint Among Facial Features 

Human face image belongs to a special class. The facial feature position of 
different person only varies in a local area. If we know the position and o- 
rientation of a face, we can use the spatial constraint among facial features 
to obtain the approximate 
position of each facial feature. 
As shown in Fig. 5 .25(a ) ,  the 
human face can be described 
by an ellipse. The ratio be- 
tween length and width is 
roughly 7 " 5, and the distance 
between two eyes '  centers is 
about 2/5 of the width of face. 
For a face with orientation, 
this spatial constraint still 
holds (see Fig. 5.25 (b)) .  

Multi-cue Fusion for Prediction 

Fig. 5 .25  (a) The spatial constraint among 
facial features~ (b) The spatial 
constraint also holds for face with 
orientation 

The spatial constraint among facial features can be combined with face 
tracking to specify the approximate position of facial features in the current 
time instant. This kind of low-level prediction can be integrated with the 
dynamic model based prediction to improve the accuracy of prediction. The 
low-level Meanshift algorithm based face tracking and spatial constraint a- 
mong facial features are the preprocessing for prediction, and they can be 
easily fused into the prediction model. 

Integrate Second-order ARP Based Dynamic Model with Graphical Model 

Second-order ARP based dynamic model is very quick to predict, but it ig- 
nores the influence on the facial feature 's  position in the current time in- 
stant caused by the position of other facial features in the previous time in- 
stant. The graphical model based prediction can obtain better result than 
ARP based method theoretically, but its non-parametric property deter- 
mines that finding the global maximum is time-consuming. This section 
combines the advantages of these two methods. The procedure of the algo- 
rithm is as follows. 
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Step 1 Based on equation (5-8) ,  we use reject sampling method to draw 

ns samples (we choose ns = 20 based on experiments) from We. 
k By this way, ns ARP based prediction results s~.t are generated, 

where O % k % n s .  

for s t in equation (5-13) we can find the best pre- Step 2 Subst i tute  sj,, ,e 
diction sj., from the ns predictions. 

Stpe 3 Based on equation (5-7) ,  we can solve the contour C(t)  of ciarrent 
facial feature in time instant t. 

In the A S M / A A M  based multiple facial tracking algori thms,  their dy- 
namic models are only zero-order or first-order linear models, which can 
only describe uniform motion or uniform acceleration/deceleration motion. 
Therefore,  the prediction based on these dynamic models is not enough. 
These tracking algorithms usually converge to correct position only when 
the initial position of facial feature 's  contour is reasonably appropriate. If 
the initial position is not very good, the tracker tends to be locked on a lo- 
cal maximum or fails. 

5.2.1 .4  Measurement Model 

After we have the prediction result of the facial feature ' s  contour position, 
the result should be verified and adjusted by a measurement model. Com- 
pared with the prediction model, the measurement model is relatively easy 
to construct. On condition that the predicted contour of a facial feature is 
C ( t ) ,  one measurement in time instant t is to find feature (e. g. edge) a- 
long the normal vector n ( p t )  of one point p t  on the contour curve.. 

f ( p t , t ) = ( C ( t ) - - C ( t ) )  �9 n ( p t ) - ~ L - g ( p t , t )  (5-14) 

where g ( p t , t )  is an Gaussian noise, and its variance ~ is a constant. The 
visual effect of measurement along the normal vector is to pull the contour 
curve C(t)  along the normal direction based on the found feature. Let C(t)  
denote the contour curve after measurement,  and it is the final tracking re- 
sult in time instant t for current facial feature. After the prediction and 
measurement model are obtained, they can be integrated into the Kalman 
filter framework in a standard manner. 

5.2.1 .5  Experimental Results 

We have implemented a prototype system by Visual C +  + and Matlab on 
Windows platform. We track 6 contours of facial features, which are left 
eyebrow (right eyebrow),  left eye (right eye) ,  nose and mouth. The con- 
tours are all quadratic B-spline, where eyebrow and nose are open B- 
spline, other facial features are described by closed B-spline. The number 
of control points for eyebrow, eye, nose and mouth is 10, 9, 16, 12 re- 
spectively (see Fig. 5.18).  The total number of control points is 66, i. e. , 
the total dimensionality is 132. 
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In order to reduce the dimensionality for contour model, we select 100 
frames of frontal face images from the training set, and these images be- 
long to 48 different persons. We do PCA for each facial feature. After di- 
mensionality reduction, the dimensionality for eyebrow, eye, nose and 
mouth is 7, 7, 12 and 9 respectively. The total dimensionality is 49, ac- 
counting for 9 9 ~  variations. 

In the training for second-order ARP based dynamic model, we obtain 6 
dynamic models from image sequences, each for eyebrows (left and r ight) ,  
eyes (left and r ight) ,  nose and mouth. In the training, we use interactive 
editing to manually mark feature points in order to get the ground truth. 
In the training of Bayesian network based non-parametric dynamic model, 
we use the same image sequence as the second-order ARP model. For an 
image sequence with M frames, there are 15(M--1)  pairs of training data. 
In other words, there are 15 kinds of data for joint probability p(sj,,, 
si,,-1), and we fit 8 cluster mixtures of Gaussians to them. For the state 
P(si,t-1)in the previous time instant, there are 6 kinds of data, we also fit 
8 cluster mixtures of Gaussians to  them. We can calculate conditional 
probability P(si,, ]s~,,-1) from the fitted probabilities. The reason to use 
mixture of Gaussians is that the relationship between the contour of a fa- 
cial feature in the previous instant and that in the current time instant is 
multimodal, and is not Gaussian. 

In the experiments, it turns up that facial expressions change very fast, 
e. g. , it only needs 10 frames to change expressions from neutral to happy 
(for 30 fps video); therefore there are relatively large motion in adjacent 
two frames. We carry out two kinds of experiments: (1) tracking multiple 
facial features in frontal expressive face images in Cohn-Kanade database (640 • 
490, 30 fps) (see Fig. 5 .26);  (2) we use digital video camera to capture face 
image sequence (640 X 480, 30 fps) with expression, orientation and occlusion 
in the outside. We track these image sequences (see Fig. 5.27, zoom in to see 
clearly). All the tracked image sequences are not included in the training set. 
We compare our algorithm's result with that of AAM' s. 

The tracking result for a surprise expression sequence is shown in Fig. 
5.26. We can see from the result of edge detection that,  when mouth is 
wide open, the teeth and tongue form dense cluster for the contour of 
mouth (see Fig. 5 .26(c) ) .  Active Appearance Model (AAM) is locked on 
local maximum, since it treats the contour of teeth as that of lower lip, 
and regards the dark circles as contour of eyebrows. Our algorithm cor- 
rectly predicts that the mouth will probably open when the eyebrows are 
rising and the eyes are opening. The original size of image sequence in Fig. 
5.26 is 640 X 490 pixels, and the tracking is carried out in that size. How- 
ever for the purpose of display in this section, we crop the image down to 
the size of 432 X 490. The frame number is shown in the time code at the 
bottom of the image. 
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(a) The tracking result by AAM 

(b) The tracking result by proposed approach 

(c) The detection of edges in image sequence 

Fig. 5.26 The tracking results of a surprise expression sequence 
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Our algorithm also can robustly track multiple facial features when face 

has orientation and size variation (zoom in to see Fig. 5.27 ( b ) ) .  Since we 
use Meanshift  algorithm to get the position of face in advance, we avoid 
the AAM tracker~s problem that left eyebrow is out of the face (zoom in 
to see Fig. 5 .27 ( a ) ) .  Fur thermore ,  in the graphical model based predic- 
t ion, we consider the spatial constraint of facial features,  and the problem 
that the contour of upper lip overlaps with that of nose is also avoided. In 

(a) The tracking result by AAM 

(b) The tracking result by our approach 

(c) The pre-tracking result by Meanshift 

Fig. 5.27 Comparison of tracking results: from far to near, quickly approaching the 
camera, and with head orientation and face expression 
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Fig. 5.27, the frame numbers are 9, 37, 42, 62, 70. Our algorithm runs 
at 3 frames per second on a PentiumIV 1.8 GHz CPU. 

In this section, we introduce a Bayesian network enhanced prediction 
model based multiple facial feature tracking algorithm. We combine the 
second-order ARP based dynamic model with the graphical model--Bayesian 
network based one, and obtain a quick and accurate multi-cue based pre- 
diction model. The prediction and measurement model are integrated into 
the Kalman filter framework in a standard way. 

5 . 2 . 2  Multiple Facial Feature Tracking Based on Probability Graph 
Model 

Probability graph model is an important approach for analysis and infer- 
ence in computer vision. Multiple facial feature tracking is very challeng- 
ing because there are plentiful non-rigid motions in facial features besides 
rigid motions in faces. Non-rigid facial motions are usually very rapid and 
often form dense cluster by facial features themselves. Only using tradi- 
tional Kalman filler is inadequate because it is based on Gaussian density, 
and works relatively poorly in cluster, which causes the density for facial 
feature 's  contour to be multi-modal and therefore non-Gaussian. Isard and 
Blake E~ firstly proposed a face tracker by particle filter CONDENSA- 
TION, which is more effective in cluster than Kalman filter. 

Although particle filters are often very effective for visual tracking 
problems, they are specialized to temporal problems whose corresponding 
graphs are simple Markov chains (see Fig. 5.28). There is often structure 
within each time instant that is ignored by particle filters. For example, in 
multiple facial feature tracking, the expressions of each facial feature 
(such as eyes, eyebrows, lips) are closely related~ therefore a more com- 
plex graph should be formulated. 

In this section, we employ a spatio temporal graphical model for multi- 
ple facial feature tracking (see Fig. 5. 29). Here the graphical model is 
probability graph model rather than 2D or 3D facial mesh model. In the 
spatial domain, the model is shown in Fig. 5. 29. Non-parametric belief 
propagation is used to infer facial feature 's  inter=relationships in a parts- 
based face model, consequently the location and state of some features in 
cluster can be recovered. In temporal domain, every facial feature forms a Mark- 
ov chain that just likes the conventional CONDENSATION (see Fig. 5.28). 

5.2.2.1 Multiple Facial Feature Tracking by Particle Filter 

We adopt the CONDENSATION algorithm to track each facial feature. 
Although more complex tracker, for example, ICONDENSATION, UPF, 
and Rao-Blackwellised particle filter can be used, we find the performance 
of our algorithms to be largely independent of the choice of different parti- 
cle fil ter 's implementations. So we choose the CONDENSATION for sim- 
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~ ~ 1 7 6 1 7 6  

Fig. 5.28 The Markov chain assumption of particle filters. The empty circle xt repre- 
sents the hidden state (contour) in time i, and the filled-in one Ye denotes 
the local observation 

eyebrow 

eye  

, nose  

mouth 

Fig. 5.29 Tracking multiple facial features with spatio-temporal graphical model. 
Each facial feature's state (contour) forms a Markov chain in temporal 
domain, while facial features are related to each other in each time instant 

plicity. Six facial features are tracked in this section. They are eyebrows,  
eyes, nose, and mouth. Take eye for example, we track the eyelid con- 
tour. The contour is modeled as B-spline X t =  {Xl ,xz ,"" ,Xe }, and the ob- 
servation of eye is Y, = { y l , y z , ' " , y t  }. We need to infer the marginal con- 
ditional density p(Xe ]Y,). Isard and Blake E127 have proved that:  

p(xe I g e ) = p ( x ,  [ y, ,g,- i  )=Cep( y~ ]Xe)p(xt IN,-1 ) (5-15)  

C 
p(xe I Y,-1) = | p ( x  t [ x ~  )p(x,_x Y~-~ ) dxt-1 (5-16)  

d xt_ 1 

where c~ is constant. In equation (5-15) ,  p(Xe Y,-~) is the effective prior 

model, and p(y ,  Ixt) is the observation model. In equation (5-16) ,  p(x ,  I 
x,-1) is the dynamic model. 

�9 Why Several Particle F i l t e r s  Single particle filter is not suitable 

to track multiple facial features simultaneously. The reason is as follows. 
the total dimensionality added by each fea ture ' s  dimensionality is too high 
(dozens);  The tracking efficiency of particle filter decreases exponentially 
along with the linear increasing of dimensionality. Usually,  it is extremely 
difficult to get good results from particle filters in spaces of dimensionality 
much greater than about 10. Even if dimensionality can be reduced by PCA 
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or other nonlinear methods, the total dimensionality of multiple facial fea- 
tures is significantly large. If we reduce the dimensionality too much, val- 
uable state information may be lost. 

Human face contains multiple facial features, and it can be decomposed 
into several parts,  such as eyebrows, eyes, nose, and mouth,  to form a 
graphical model in spatial domain. In this section, we track each facial fea- 
ture by its corresponding particle filter, therefore computational complexi- 
ty is converted from exponential to linear with the size of the graph. 

�9 Particle Filter Itself is not Enough When there are rapid motions 

in one facial feature (e. g. mouth) due to the change of facial expressions 
(see Fig. 5 .30 ) ,  the corresponding particle filter may fail to track the facial 
fea ture ' s  contour. It is difficult to reduce the risk of this failure if the par- 
ticle filter that tracks only one feature is used. In this section, we track 
several facial features simultaneously through using several particle filters. 
When an emotion is presented on the face, different facial features have 
natural physical interaction. For example, when we smile with blinking 
left eyes, our left mouth tips will move up; when we surprise with wide- 
open mouth,  the eyebrows will move up. 

Instead of constructing heuristic rules for these relationships, we learn 
the relationships among facial features from training data beforehand. Dur- 
ing the process of tracking, if we detect that some facial feature tracker~s 
results are poor, we can infer their positions and states from other facial 
features by Bayesian inference. In this section, belie{ propagation is used 
to carry out Bayesian learning and inference. 

Fig. 5.30 Three consecutive frames at 30 fps show that facial feature motions are rapid 

5.2.2.2 Combining Particle Filter with Belief Propagation 

Loopy Belief Propagation 

In every time instant,  facial features are contained in an undirected graph- 
ical model Gf (see Fig. 5 .31) .  Let V denote the set of nodes (facial fea- 
tures).  Nodes are connected by edges E to describe the relationship be- 
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y .... (F-,) eyebrow 
(x 5 ,  ) V t ................. 

....... O eye 

t ~ nose 
\ 1 

[ ~  mouth 

Fig. 5.31 Markov network representation of a face in spatial domain, X 1 , .272 , X 3 

(x4), and x ~ (x 6) denote the contour of mouth, nose, eyes, and eyebrows 
respectively 

tween facial features. The neighborhood of a node i is N B ( i ) =  { j l ( i , j )  E 
E}. Let x ~ denote the hidden variable (contour  of facial fea ture) ,  and y/ 
denote the observed variables (facial feature image). Let {x i } = {x' 1 1~<i~< 
N} ,  and { y / } = { y ~ l l ~ i ~ N } ,  where N is the number of nodes in graph- 
ical model Gf. The joint probability density function factorizes as: 

1 p( {x ' } , { y ' } )  = ~ I I J r o ( x ' , S ) I I r  ') 
( i , j )E i E v  

(5-17)  

where C is a normalization constant ,  ~0 ( xi , xJ ) is a correlation function 
between x i and its neighbor variable x ~ , and r (x  ~ , y~) is an observation 

function that denotes the evidence of x i. 
From Fig. 5 . 31 ,  we can see that it is a Markov network with loops. 

Experiments  motivate us to apply the belief propagation rules in the Mark- 
ov network with loops. In the belief propagation,  we need to calculate the 
conditional marginal distribution p ( X / I  { yi}) for the nodes that have less 
confidence of the tracking results by particle filters. The intuitive meaning 
is that we can infer the facial feature i~s position (contour)  and state (e. g. 
expression) from all facial features '  observation {y~}. 

B e l i e f  P r o p a g a t i o n  in S p a t i o - t e m p o r a l  G r a p h i c a l  Mode l  

In this section, the graphical model is the combination of directed graph 
(Markov chain) and undirected graph (Markov network) .  In order to do 
Bayesian inference, the key point is belief propagation or message passing. 
The messages of directed graph are passing through the time axis. In Fig. 

�9 i 5.32,  the message passing from x',_~ to x, is denoted by M(x,_,~ --~x;). We 
have �9 

i i M(xi-1  ---~xl)~-p(xt I {Yt-~ } ) (5-18) 

i ~ -  y i  where {Y,-x } { I I ~ i ~ N }  - - t - -  1 
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Fig. 5 .32  

Q 
M 

Message passing in a directed-cum-undirected graphical model 

I i i 
Xt-- 1 )b(x,-1 )dx~l p ( ~  I {YI-~ })  = X: 1 p(xt I i (5-19) 

i and b(x,) is the conditional marginal probability distribution in node ( i , t ) ,  
and it is what we have to calculate, b(xi-~ ) means the tracking result in fa- 
cial feature i by graphical model in the previous time instant. The belief at 
node (i , t)  is proportional to the product of the local evidence at that node 
~i (xl ,  y l ) ,  and all the messages coming into it. There are two kinds of 
messages: one comes from the immediate preceding node xi-1 temporally; 
the other is from the neighbors of node ( i ,  t) spatially. Therefore, we 
have �9 

�9 i i i b(x',) = K r  y , ) M ( x ~  ~ x,) I-[ mj, (xl) (5-20) 
jC:: NB(i,t)  

where K is a normalization constant and NB( i , t )  denotesthe nodes neigh- 
boring the node ( i , t ) .  The message from the previous time is M(xi-~ 
x~), as defined in equations (5-18) and (5-19). Fur thermore,  the message 
from the spatial neighbor is determined self-consistently by the following 
message update rule: 

i mji(xl) a a:Izji(c~t ,xt)~j(~t ,~)M(~t-1 --~ x~t) I-[ mkj (~t)d~t (5-21) 
kE NB(j , t ) \ ( i , t )  

where we take the product of messages going into node ( j ,  t) except for 
the one coming from node ( i , t ) .  Note that the message M(xi_~--~x~) from 
the previous time is also considered. 

i i Based on a factorization, we use the observation function ~ ( x , , y , ) - -  
i " i " i P(yl Ix,). We also use the correlation function ~j~ (x~ , x , )  = p(x~ , x , ) /  

p(x~), and fit this probability with mixtures of Gaussians. The message 
i i M(x,_l~ --~x~) passing from x,-1 to xt can be viewed as the effective priority: 

a prediction taken from the marginal probability b(X~-l) from the previous 
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time-step, onto which is superimposed one time-step from the dynamical 
model. From equations (5-20) and (5-21), we can see that r always comes 
with M. By the analysis above, the product of them is. 

�9 ~ ~ = lp  
r ( x~t , yl ) M( xi_x --~ x t  ) - -  p ( y l  ] x t ) P ( x l  ] { gi-~ } ) ( x1121, {gi-1 } ) 

Ct 

(5-22) 

Equation (5-22) means that the product is effectively the posterior proba- 
bility of xl conditioned on yl and {Y~_~ }, and this shares the same idea with 
the CONDENSATION algorithm. This property is important,  because it 
allows us to firstly run the particle filter to track each facial feature in one 
time-step, and the output of particle filter is naturally fitted into a loopy 
belief propagation process (equations (5-20) and (5-21) ). 

Learning the Correlation Function 

In the training database, we manually mark some face~s features~ there- 
fore we obtain the ground truth position of the contour x i. First we reduce 
the dimensionality of facial feature i ' s  contour x i by PCA. Then from the 
training data, we fit mixtures of Gaussians to p(x~) and the joint probabil- 
ities [(x~,  xl)  for neighboring facial feature i and j. We evaluate [(x~[ 

i " " i x~)=p(x~ , x ' , ) / p (x l ) ,  therefore the correlation function gzji (xj ,x,)  is ob- 
tained. 

Optimizing Bayesian Inference for Markov Nes 

Considering that Bayesian inference using belief propagation costs substan- 
tial time, we only initiate it when the particle f i l t e r ' s  tracking result is 
poor, or only infer the facial feature whose result is not so good. For the 
corresponding particle filter on one facial feature, the tracking result on 
time t can be described by the moments.. 

M 

E( f ( x t )  l Yt) = ~-]n(m~ f "  (m) t [ ~ S t  ) (5-23) 
m = l  

A mean position using f ( X e ) =  X, can be utilized for graphical display. 
Moreover, let f ( x , ) = x ,  x~, we obtain the variance a,=E(x ,x~  IY,) of the 
tracking result, and we use the variance as a metric of the tracking quality. 
For each facial feature, we have el, i - l , . . . ,  N,  where N is the number of 
all facial features (in this section, it is 6). For the facial features that have 
larger variances, we determine that their tracking results are worse than 
others. Therefore belief propagation is carried out to infer the more plausi- 
ble positions of their contours. 

5.2.2 .3  Experimental Results 

We have developed a prototype system on Windows platform using Visual 
C-+--b- to implement the algorithms in this section. There are 6 contour 
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models for each facial feature: eyebrows, eyes, nose, and mouth. Each 
contour is a quadric B-spline curve, in whicl~ nose and eyebrows are open 
curves, and others are closed curves. As shown in Fig. 5 .34 ,  there are 6, 
9, 12, 12 control points for left (right) eyebrow, left (right) eye, nose, 
and mouth respectively. The total number of control points is 54; there- 
fore the dimensionality is 108. 

We choose Cohn-Kanade facial expression database as the training set, 
because it contains plenty of frontal faces with rich facial expressions. This 
database is stored as 30 fps gray-scale image sequences. To learn the rela- 
tionships among facial features, we have selected 496 frame frontal face 
images, which belong to 98 different persons, and use interactive program 
to mark each facial feature's contours. PCA is used to reduce the dimen- 
sionality for each facial feature'  s contour. After that ,  the dimensionality 

of left (right) eyebrow, left (right) eye, nose, and mouth is 4, 7, 9, and 
9 respectively;  therefore the total dimensional i ty  after dimensionality re- 

duction is 40, accounting for 99 % of the total variance. 
After constructing the PCA bases, we compute the corresponding PCA 

coefficients for each individual in the training set. Then, for each of facial 
feature's contour pairs connected by edges in Fig. 5. :31, we determine ker- 

i nel-based non-parametric density estimates for each node itself p ( x , )  and 
�9 i their joint probabilities p(x~ , x , ) .  Fig. 5.33 shows several marginalizations 
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Joint densities of four different pairs of PCA coefficients, it can be seen 
that the marginal distributions are multimodal 
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�9 i of p(x~ ,x,), each of which relates a single pair of PCA coefficients (e. g. 
the first mouth and second left eye con tour ' s  coefficients). We can see 
that simple Gaussian approximations would lose most o{ this data s e t ' s  
meaningful structure. 

We have also trained the dynamic model for each facial feature. For ob- 
servation model, a set of independent measurement lines that perpendicu- 
lar to the hypothesized contour are used to measure the likelihood o{ detec- 
ted edge points. 

Using a single CONDENSATION tracker with multiple contours to 
track multiple facial features is infeasible because the dimensionality is 
much higher than 10. Here we compare our results with those of Multiple 
Independent CONDENSATION-style Trackers (MICT) .  We have tested 
our algorithm on the image sequences in Cohn-Kanade database and the 
videos (640 • 480, 30 fps) that we captured by a digital video camera. The 
test image sequences are not included in the training database. The results 
(Figs. 5 . 3 4 - - 5 . 3 6 )  indicate that our tracker is more robust than MICT. 
Our tracker runs at about 3 fps and the MICT tracker runs at about 4 fps 
on a PentiumIV 1.8 GHz CPU. 

In this section, we extend the particle filter from the relatively simple 
Markov chain to the directed-cum-undirected graphical model applied to 
multiple facial feature tracking problem. Spatial structure information and 
relationships among nodes in each time instant are effectively considered by 
Bayesian learning and inference in the loopy be!ief propagation framework. 

5 . 2 . 3  3D Facial Expression Reconstruction 

Facial animation is a challenging topic in computer graphics, because facial 
expression involves non-rigid motion of multiple facial organs. Under cur- 
rent technical condition, only performance driven facial animation tech- 
nique provides solution to realistic 3D facial animation. In terms of data 
source, the performance driven animation technique can be divided into 
two classes.. (1) the 3D facial motion data are captured by special motion 
capture equipment; (2) the 3D facial motion data are obtained via tracking 
a video sequence. Using motion capture equipments is a direct way to ob- 
tain the 3D motion data. The well-known manufacturers are Vicon compa- 
ny and Motion Analysis company. Though the motion capture equipments 
have been widely used in film making, animation and PC game, the equip- 
ment is very expensive to ordinary users. On the contrary, video driven fa- 
cial animation is attracting people 's  attention since digital video is available 
everywhere and it is much cheaper than the motion capture equipment. An 
indispensable procedure in the video driven facial animation technique is 3D 
reconstruction of 2D motion data. In Sect. 5 .1 ,  we have obtained the mo- 
tion trajectory of facial features in video through variant approaches, and 
the so called 3D reconstruction means converting the 2D tracking data into 
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(a) Our result 

(b) MICT's result 

Fig. 5.34 Tracking result of a surprise expression sequence. (a) Our algorithm cor- 
rectly tracks the eyebrows and mouth~ (b) The dark circles and teeth dis- 
tract the MICT tracker, therefore it fails to track them 

3D motion data via computer vision techniques. 

Traditional image based 3D reconstruction needs two or more images 
with different viewpoints. Firs t ,  the positions of feature points should be 
aligned on the images, and then the correspondence between the feature 
points should be established, finally the depth information of feature 
points can be obtained through stereo vision technique. Generally speak- 
ing, calibration is necessary for getting fine results. However ,  the error 
that occurred in calibration may cause degeneration of reconstruction re- 
suits. In many cases, the images are not captured by users themselves, 
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(a) Our result 

(b) MICT's result 

Fig. 5.35 Three consecutive facial expressions, neutral, surprise, and happy. From 
the first row to second row, and left to right, frame numbers are. 320, 
322, 324, 356, 358 

thus the inner camera parameters are not available. Therefore,  traditional 

3D reconstruction is limited by the requirement of pre-calibration. Though 

researchers have done some 3D reconstruction based on uncalibrated ima- 

ges, these works are restricted to static face modeling, and 3D motion data 

for driving the face model is still unavailable. So in this section, we will 

introduce a new approach to reconstruct 3D motion data from uncalibrated 

monocular video sequence. In this approach, the perspective projection 

camera model is approximated by weak perspective projection model. We 

will begin with the basic pinhole camera model. 
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(a) Our result 

Fig. 5.36 

(b) MICT's result 

Comparison results of hiding mouth. Frame numbers are. 803, 805, 810, 
871 and 872 

5.2.3.1 Pinhole Camera Model 

Pinhole model is the mostly used camera model owing to its simplicity and 
accuracy. As shown in Fig. 5 .37,  the viewpoint is O, the coordinate of 3D 
space point P(Xw ,Yw, Zw) under the camera coordinate system is ( X , Y ,  
Z ) ,  and the projection on the image plane is P ' ( x , y , f ) ,  we have f / Z =  
x / X =  y/Y. Suppose the c a m e r a ' s  field of view ( for)  along x axis is 
x for,  the resolution is u~, and the for along y axis is y for,  the resolu- 
tion is Uy, then the image coordinate (u ,v )  of P '  is. 
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U--- 
X - -  X 0 

f "  tan ( x f o v / 2 ) / u ~  
m X _~._ U o  

d .  

Y--yo _ y 
v =  f . tan ( y f o v /  2 ) / Uy ~)  --~- Vo 

where dx,  dy are physical sizes of 
each pixel along x and y axis, and 

(Uo,Vo) is the intersection of camera 
center line and image plane. 

Thus we have 

[i] = ~ u0 1 !] I! !l 

zw Yw ~x~ 
P 

5/J f 
Fig. 5.37 Pinhole camera model 

where a . ,  a~ are the flex factors along x and y axis. Although au, a~ have 

only 2 degrees of freedom, they are related to multiple variants,  therefore 
the combination of their variance can lead to mathematically equivalent re- 

sults. For example, d~, d ,  of a real world camera are closely related to f .  
In this section, f o r  is used to control the variance. For the sake of sim- 

plicity, we regard one camera coordinate system as the world coordinate 
system, then the transformation to the other camera coordinate system can be 
described as. 

i il = Eo 'l  lW 
where ( X , Y ,  Z) and (Xw,Yw, Zw) are the camera coordinate and the world 

coordinate respectively, R is 3 X 3 rotation matrix and t is translation vec- 

tor. Thus, the perspective projection of the second image can be described as. 

Xw Xw [i] E  0u0 
Z = a~ Vo 0 1 = M  

0 1  Zw ~lW 

where (u,  v) is the projection of the world space point (Xw ,Yw ,Zw) on the 
second image plane, (u0, v0) is the intersection of camera center line and 

the image plane, here we suppose (u0,v0) is the image center. The inner 

parameters u0, v0, au, av are subject to the field of view along both axis 

f ~ , f s  and the w i d t h  and height  of the image, i. e. , Uo = w i d t h ~ 2 ,  Vo = 

height~2,  au--Uo/tan ( f ~ / 2 ) ,  av- -Vo/ tan  ( f y / 2 ) .  The 6 outer parameters 
belong to R and t. 
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5.2 .3 .2  Weak Perspective Projection Model 

Weak perspective projection is a kind of affine projection which has been 
widely used in the domain of computer vision. Two steps are needed in the 
course of weak perspective projection.. (1) orthogonally project the space 
point onto the object plane which is orthogonal to the camera center line; 
(2) then project the point on object plane to image plane via pinhole per- 
spective model. This procedure is shown in Fig. 5.38,  where P and R are 
the space points, p1 and R 1 are the orthogonal projections on the object 
plane, then the image points under weak perspective projection are pl and 
r 1. This procedure can be described by the solid arrow line. The dotted ar- 
row line shows the perspective projection procedure, in which p and r are 
the perspective projections of P and R. The dashed arrow line denotes the 
orthogonal projection, p; and r x are obtained by orthogonal projection of P 
and R. The weak perspective projection is in accordance with orthogonal 
projection up to a scale factor, and this {actor is subject to the distance be- 
tween the object and the camera optical center O. 

R 1 
rW 

. . O ..... * "" 

o o O ~  

p 
pl 

. m  

r 
rl 

pT pl 
P 

Fig. 5.38 The weak perspective projection, perspective projection and the or- 
thogonal projection 

5.2.3.3 3D Reconstruction by Shape From Motion (SFM) Algorithm under 
Weak Perspective Projection 

According to the rationale of weak perspective projection, when the dis- 
tance between object and camera is much larger than the depth value of the 
object itself, weak perspective projection is the reasonable approximation 
of perspective projection. Human face is in accordance with this condition. 
According to SFM, non-rigid shape can be seen as a weighted linear combi- 
nation of a set of shape bases. Given tracking results, 2D features in each 
frame can be described by weak perspective projection model: 

ef.  -- (x ,y ) f f .  --[efC f lRf  , ' "  ,efc fKRf ] ~ I-S1. , " "  ,SKn] T -~tf 
( f = l , . . . , F ,  n = l , . . . , N )  (5-24) 
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where F and N are the number of frames and feature points, e, is non-zero 
scalar of the weak perspective projection, c,1 ,"" ,cm are combination coef- 
ficients of K shape bases $ 1 . , " ' ,  SK.,  t ,  is the translation, R,  stands for 
the first two rows of the f t h  camera rotation. We stack the x and y coor- 
dinates of each feature in F frames to form a 2F • N tracking matrix P,  
then P = M  �9 S + T ,  where 

M _ _ _  

e~ Cl~ R1 "" el ClKR1 
�9 . o 

o 
�9 ~ ~ 

eFC Fi RF "" eFC FKR F 

, S =  

Sll �9149 $1N 
�9 , �9 

~ ~ �9 

SKI .... SKN 

and T is a translation matrix. We subtract T from P and get the registered 
tracking matrix: P = M .  S. Then the rank 3K approximation of P can be 
determined by performing SVD on P. After SVD decomposing, we get _P= 
M �9 $ where P ,  M,  S are approximations of P,  M ,  S respectively and K 
can be determined by rank (P) /3 .  In fact, the factorization is not unique, 
for given any 3K)<3K invertible matrix A, _b=/~A �9 A-1S holds. So, if 
we could uniquely determine A, the rotation, shape coefficients and shape 
bases could be denoted as M = M  �9 A ,  S = A  -1 �9 S. 

It can be known from Fig. 5.38 that the weak perspective projection is 
in accordance with orthogonal projection up to a scale factor, so we use the 
orthonormality constraints E123 on rotation matrices to recover A. Let A A  T 

equal Q, then M M  T - -  ~IQ~I T. Represent the ith two rows of /~ by 
M2.i-1.2. i ,  we get: 

~12" i--lQ ~IT. i--1---Mr2, iQ~IT, i (5-25) 

M 2 . i - I Q  2 . i = 0  (5-26) 

However,  Xiao, et al. [13] proved that only rotation constraints are inad- 
equate for solving the exact scaled rotation matrix M. Since A is an inverti- 
ble matrix with rank 3K, they denoted the tth three columns of A as ak, 

k = l  , . . . , K ,  thus Qk =aka~ represents the kth component of Q, that i s , Q =  
Q I + " ' + Q k .  By examining the singular values of each f rame 's  image pro- 
jection, they selected K frames involving independent shape bases. And 
for each Qk, based on the independency between shape bases, they devel- 
oped another set of shape basis constraints. 

/ ~ 2 . i - l Q k 2 ~ . j - l = l  ( i , j )  EOOl 

~12 . i - lQk~IT . j -1 - - -O  ( i , j )  Ew2 

~" /~T = 1  M2.iQk 2.j 

, = o  

= o  

( i , j )  EWl 

( i , j )  Ew2 

( i , j ) E eOl U oo2 

( i , j )  Ea)l Ueo2 

(5-27) 

(5-28) 

(5-29) 

(5-30) 

(5-31) 

(5-32) 
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W l = { ( i , j ) [ i = j = k } ,  w 2 - { ( i , j ) l i = l , ' " , K ,  j - - l , . . . , F , i = / = k }  

Combining these two kinds of constraints, we can solve Q correctly, 
thus,  A can be computed through SVD. As discussed above, M can be ob- 
tained by M ~ A, since the scale factor e l , " ' , e v  can be seen as constant, 
the generalized camera projection matrix can be denoted as. 

-Cll R1 ' ' '  cl~Rl 
M =  : " / " 

_c~ Rv c~KR F J 

Since 

R,=[r,x 1 ( f = l , . . .  , F )  
I r f4 rf5 r f6 

are the first two rows of camera rotation matrix. We spread the two rows 
in M corresponding to the f t h  frame as: 

FC}I rfl  C)'I ?"f2 C~r /"f3 ~176 
Lc}1  4 C}l ,a . . .  

and rearrange the entries to obtain 

Iclfl rfl clfl ?~f2 clfl rf3 
m lf ! 

clfKrfl clfKrf2 clfKrf3 
cl J 

clfl r clfl r f5 clfl r f6 1 

c lm r z4 c )  r zs clm r z6 

This matrix can be seen as the inner product of column vector [-C}l, '",  
c}~-]T and row vector [ r i l ,  ri2, rza, ry4, rsa, rf6-]. The camera projection ma- 
trix and the combination weights for the shape bases of each frame can be 
solved by applying SVD on m}. Accordingly, the 3D shape in Euclidean 
space can be obtained. The procedure of SFM algorithm adopted in this 
section can be listed as bellow: 
Step 1 Construct 2D motion data matrix P with the dimensionality 2 F •  K 

when given the tracking results; 
Step 2 Apply SVD on P and obtain. P =  UIgvT; 
Step 3 Compute the rank 3K approximate value of P as _ P = L r ~  "T, where 

K - - r a n k ( P ) ~ 3 ;  

Step 4 C o n s t r u c t / ~ = U ~  and ~ _ ~ ~ - T  
Step 5 Solve optimal Q according to equations (5-25) and (5-32) ; 
Step 6 Compute the camera projection matrix and the combination 

weights of each frame based on M,  then finally solve the 3D coor- 

dinate of feature points as: PaD= cflS1 +"'+CfKSK, f = l , ' " , F .  
In this section, we approximate the perspective projection matrix with 

the weak perspective projection matrix, and reconstruct 3D motion data via 
SFM algorithm based on the 2D tracking data. Experimental results indi- 
cate that the reconstructed motion data is reasonable and can be used to 
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drive 3D face model and synthesize realistic facial expressions. In the fol- 
lowing parts, we will first introduce the key techniques to realistic human 
face modeling, and then the facial expression driven by reconstructed 3D 
motion data is demonstrated subsequently in Sect. 5.4.1. 

5.3  Video-based Human Face Modeling Techniques 

The performance driven facial animation is a popular way in facial anima- 
tion synthesis. Realistic 3D facial expression can be obtained by driving 
the personalized 3D face model with the 3D facial expression motion data. 
Much work has been done in the domain of 3D realistic human face model- 
ing. The most impressive work was proposed by Blanz and Vetter E14~. U- 
tilizing a 3D face sample base, they derived a morphable face model by 
transforming the shape and texture of the examples into vector space rep- 
resentation. New faces and expressions can be well modeled by forming 
linear combinations o{ the examples. However, the computation of corre- 
spondences and face model parameters is burdensome work. When two or 
multiple viewpoint images are available, stereo vision algorithm can be uti- 
lized to achieve the 3D reconstruction. Pighin, et al. E15~ extracted facial 
features from several uncalibrated images and reconstructed a personalized 
3D realistic {ace model. They first selected feature points on these images 
and computed camera parameters based on the correspondence between 
feature points on different images, then solved for the 3D coordinates of 
these feature points. The realistic 3D face model was obtained by defor- 
ming a generic 3D face model via scattered interpolation using these per- 
sonalized 3D feature points. Stereo vision based 3D reconstruction needs 
images with multiple informative viewpoints, but this is not available in 
many real-world applications. Therefore, 3D face modeling from monocu- 
lar video sequences is o{ great importance. 

In this part, we introduce a single frontal image based face modeling 
approach. We use Locally Linear Embedding (LLE) to search for optimal 
samples in sample space and learn the reconstruction weights. The person- 
alized 3D face is synthesized by linear combination of these samples, and 
the texture is synthesized by mapping the frontal image to the 3D face. 
LLE algorithm has been introduced in detail in Sect. 5 .1 .2 ,  so we focus on 
the 3D face reconstruction in the following part. 

5.3.1 Dimensionality Reduction by LLE 

To support the reconstruction work, we use 3D head samples generated by 
3D sculpture software FaceGen Modeller. The database includes 55 males 
and 45 females, ranging in age from 25 to 50, in which 80 are eastern Asi- 
an and 20 are Caucasian. After preprocessing for good performance, each 
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head model has 6,174 vertices which constitute 6,054 quadrangles. What 
is more, the topology relationships of these vertices as well as the point by 
point correspondences between different head samples are already known 
during the preprocessing. 

According to our work, personalized 3D face reconstruction needs not 
only the features selected from 2D image but also the statistical informa- 
tion from the 3D face samples. Each 3D face sample could be seen as a 
high-dimensional datapoint in nonlinear embedded subspace. Manifold 
learning technique contributes to learning corresponding low-dimensional 
coordinate in a manifold space. These low-dimensional data reflect the 
most intrinsic properties of the original samples. LLE algorithm indicates 
that high-dimensional data and low-dimensional coordinates canbe recon- 
structed by their neighbors with the same weight E97. So, once the low-di- 
mensional coordinate of the image subject is synthesized by that of the 
samples, corresponding high-dimensional data can be reconstructed by lin- 
ear combination of these samples. 

5.3 .2  Active Shape Model (ASM) and Active Appearance Model (AAM) 

Extracting facial features from single image is an indispensable procedure 
in image-based face modeling. Active Shape Model (ASM) and Active Ap- 
pearance Model (AAM) are prevalent approaches to the problem of sparse 
feature alignment. Point Distribution Model (PDM) is used in both ap- 
proaches. 

ASM combines local texture matching and global shape subspace con- 
straint together, and converges to an optimal result by alternant iteration 
between local search and global constraint. To better learn the shape vari- 
ance of the training data set, we need to normalize the training images by 
image rotation, translation and scaling so as to approach a benchmark 
shape. The shapes are represented by a set of shape vectors. Then PCA is 
appl!ed on the normalized shape vectors, the workflow can be described as 
follows. 
Step 1 Compute the covariance matrix of the normalized shape :  

N 

1 - - ~1~ = ~ ~ (s~ - s )  (s~ - s )  w 
i----1 

Step 2 Compute the eigenvalues As (A1 ,A2,"" ,Am) according to the follow- 
ing equation: 

Select corresponding eigenvectors as. P =  (p l ,  p2, "'" ,'pt). Since 
the eigenvectors pi corresponding to the larger eigenvalues Ai de- 
notes the most important shape variance, any shape vector can be 
represented by the k leading eigenvectors as: x=x-&Pb where b=  
(hi , b 2 ,  . . . .  ,bt) T are coefficients for controlling the shape variance. 
Different shape has different b, as is shown in Fig. 5.39. Since b 

Step 3 
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Fig. 5.39 Different b denotes different shape 

is positive definite, b=  pT ( x _  x'). 
In fact, AAM is a further development of ASM, it considers both shape 

and texture information, and the combination of shape and texture is so 
called "appearance". It has been widely used in many applications, e. g. 
facial template alignment, face recognition and face image synthesis. The 
rationale is to model the variance of shape and texture information via sub- 

space analysis. Suppose W= { (So, To ) } where So = [  (Xl, Yl ) ' ' ' ~  ('.T-'k' Yk ) -] 
is the shape vectors, each shape vector includes K discrete feature points, 
and To is the texture enclosed by So. We set the average shape S as the 
benchmark shape and align all the shapes to S, thus the average texture of 
To can also be obtained. In AAM, the shape can be represented by K pat- 
tern through PCA, in detail, a shape can be represented by a vector bs (bs 
is in fact the model parameter) in feature subspace F. Namely: 

Shape is described as. S=S+~b~ 
Texture is described as. T=T[-Otbt 
The "appearance" of each sample can be described as: 

b= [w~b~ Fw~4g (S--r3> 
bt l~-I I~T(T--~F) I 

where ws are the weights. Since the metric of shape is distance value and 
the metric of texture is gray-scale value, they cannot be combined directly. 
A weight is thus introduced to combine shape and texture information to- 
gether. The weight is computed as the ratio of the summed eigenvalue of 
the shape and texture models. Further perform PCA on two feature sub- 
spaces and compute the composite appearance model as. 

m 

b = b +  4~c 

where c is the eigenvectors of the appearance subspace. The rationale of 
AAM can therefore be described as an optimization problem as bellow: use 
the model synthesized image to approximate the object image, and adjust 
the model according to the error between two images. 

5 . 3 . 3  3D Face Modeling 

In 5 .3 .1 ,  we have preprocessed the 3D sample faces by dimensionality re- 
duction process. This process is performed offline just once during train- 
ing, then 3D face modeling can be done based on the dimensionality re- 
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duced data. Suppose that the manifold coordinate of sample faces after di- 
mensionality reduction is u the face modeling algorithm can be de- 
scribed as the following three steps. 
Sti~p 1 Automatically align m facial features Fp from the input image by 

AAM, the facial features are shown in Fig. 5.40 (b).  After trans- 
lation, rotation and scaling, Fp is transformed into sample space. 
Transformed image feature points are denoted as Fp z. From Fp z, 
we extract X, Y coordinates of m feature vertices from all face 
samples. This is done by measuring the Euclidean distances be- 
tween Fp z and vertices of each face sample. The extracted features 
are represented as subspace of the original face samples: 

Sf 

o e e  

F X I "  YN.1 [ l:'l XN,I~ 

IXi= x;o / 
[_Yl ,m "" YN,m -J 

Sf E R 2~xN. Then, we use LLE algorithm to select k~ samples from Sf 
which best reconstructs Fp z. These samples are denoted as Si E R 2mxk' . 

Fig. 5.40 (a) Input frontal face image of one subject; (b) Automatically aligned face 
image for reconstruction 

Step 2 Use LLE algorithm to compute weight Wextract for reconstruction of 
Fp z by Si. That is, Wextract satisfies FpZ=Si  X Wextracto The compu- 
tation of weight can be described as: 

Wextrac t = L L E ( [ F p '  ,Si ] ,ki ,d)  

where ki is the neighborhood size computed in Step 1, d is the size 
of low-dimensional coordinate. Then, given Si, we find the corre- 
sponding low-dimensional coordinates z Y origin from Yorigin through one 
by one correspondence. Thus,  the low-dimensional coordinates of 
the input image subject can be synthesized by linear weighted com- 
bination of ' Y origin �9 
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Step 3 

! 
Y . . . . .  = Y  origin �9 Wextrac t  �9 

In Step 3, Y . . . . .  will be used to reconstruct personalized 3D face ge- 
ometry from image. 
Select Kr coordinates from lfrorigin which best reconstruct Y ...... 
These coordinates are represented as Yr. Similarly, given Yr, we 
can find the corresponding original face samples Sr because of the 
one by one correspondence between high- and low-dimensional data. 

Now, we use LLE algorithm with neighborhood size Kr to get 
the reconstruction weight W . . . . .  which satisfies Y . . . . .  - - - ~ r r  �9 W . . . . . .  

The computation of weight is described as. 

W . . . . .  = L L E ( ~ Y  . . . . .  ,Yorigin-] , K r  ,d)  

According to [9-], W . . . . .  is also suitable for reconstructing high-di- 

mensional data points in nonlinear space. Thus ,  the personalized 
3D face geometry S n i s  reconstructed from a single image as. 

Sn-"-Sr e W  . . . . .  

The reconstructed personalized 3D face model is shown in Fig. 5.41. 

Fig. 5.41 (a) The input frontal face image; (b), (c), (d) are reconstructed 3D face 
from different viewpoints 

5 . 3 . 4  Constraint-based Texture Mapping 

By nature, texture mapping is a parameterized process of curved surface, 
namely, finding the corresponding 2D texture coordinates of 3D vertices. 

S(x~  , y~ , z i ) = [ u ~ ( x ~  , yi ,zi),v~(x~ , y~ ,z~)-] ( i = 1  , ' " , n )  

where S is the mapping function, (xi, yi, zi) is the 3D coordinate of a vertex, 
(ui, v~) is texture coordinate of a vertex, n is the number of vertices. 

In order to build the photorealistic human face, we first manually as- 
sign texture coordinates to some feature vertices of newly reconstructed 
face geometry. The correspondence between feature coordinates and fea- 
ture vertices is defined offline as constraint. The texture coordinates can 
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be obtained by our previously built AAM in 5. 3 .2  and are described as 
Ti { ui, v~ }~_-n C R  2 , the corresponding feature vertices on the reconstructed 
face geometry are depicted as P~{x i ,  y i ,  z~ }7:1CR a. To obtain a mapping 
function from vertices to image coordinates, we use T and P to train RBF 
network: 

S ( P )  = 2 a ~ ( P - - P ~ )  = T 
i = l  

Once a is known, we obtain the texture coordinates of other vertices by 

RBF interpolation: 

Tn~w = 21~ i~ (Snew- -S  .... i) 
i = l  

w.here Snew--- E X1, Y~, Z~, X2, Y2, Z2, "",  Xn, Y~, Z. ~T E R 3" is the recon- 
structed 3D face geometry using the method discussed in Sect. 5 .3 .3 .  

Texture information between face and ears is unavailable in the frontal 
image. We solve this problem by sampling from {ace margin region on the 
frontal image for RBF interpolation. The texture mapped face as shown in 
Fig. 5.42 looks fine and natural. 

Fig. 5.42 Textured 3D realistic face under different viewpoints 

5 . 3 . 5  Results and Discussions 

We implement our reconstruction algorithm on a PentiumIV 2.4 GHz CPU 
with 512 M RAM. To reconstruct the face geometry, 52 feature points on 
the input image are aligned by a well trained AAM and in terms of texture 
mapping, the feature points also act as constraints. We choose multi-quad- 
ric function as basis function and implement the reconstruction process on 
arbitrary images. The reconstruction results are depicted in Fig. 5.43. 

The first row shows the input images, the second to the fifth rows 
show the 3D models under different viewpoints. The first two images in 
three test images are captured in our lab, and the third image is obtained 
from the Internet. Though the face pose in the third image is not so pref- 
erable, our approach still gets fine result. 
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Fig. 5.43 The reconstructed personalized realistic face models 

In this section, we propose a 3D face reconstruction approach. First ,  
LLE is used to reconstruct the3D geometry, then constraint based texture 
mapping is applied to do the texture mapping. In brief, the approach has 
the following advantages: (1) Only a single frontal face image is required 
for face reconstruction and this is easily satisfied; (2) The system is highly 
automatic and the accuracy of reconstruction is higher than that of other 
3D reconstruction approaches ; (3) Constraint based RBF texture mapping 
provides natural appearance for reconstructed face. 

5.4 Facial Expression Driven Technique 

Realistic facial animation is highly important in the computer graphics field 
as it is an essential facility for human-computer interface and virtual reality 
and is also a difficult task because there are so many non-rigid motions be- 
sides rigid motion of heads as expression changes. Instead of modeling all 
the complicated facial motions, data-driven facial animation just exploits 
facial motion data captured in real scenes. Most motion capture systems 
rely upon the placement of markers on the surface of the face, and the use 
of vision algorithms to track the movement of those points over time. The 
tracked feature points are then used to "interpolate" the whole facial 
mesh. Traditional scattered data interpolation techniques such as RBF or 
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B-splines are effective for mesh deformation and reconstruction problems 
with a small part of data loss E~6,~7~. However,  when deforming a face mesh 
using these methods, significant artifacts may occur because these methods 
take advantage of only the 3D positions of the mesh vertices but throwing 
away the information on edges. For example, when the markers  on the 
outer contour of lips move outwards to indicate opening mouth,  the lips o{ 
the deformable model may be stretched as if they were becoming thicker 
instead of mouth being opened. On the other hand, the noises in the data, 
which are inevitable in motion capture and 3D scans, are also not properly 

considered in such techniques. 
In this section, we introduce a solution to data-driven facial animation 

named manifold Bayesian regression. Our goal is to couple temporally 
dense facial motion data and a spatially dense static model to provide high 
resolution in both temporal and spatial domain. Facial motion capture data 
indicate the movement of marker points on the face mesh. Bayesian regres- 
sion is like an interpolation method which is trying to find the movement of 
other points and additionally to smooth out noise. The "interpolated" 
movement is af fectedby both the movement of markers and the distance 
between the point itself and the markers. Euclidean distance is mostly used 
to measure the nearness between two certain vertices. However,  it pro- 
vides little knowledge about the connectivity of mesh vertices, which is es- 
sential in the deformation of meshes. In this section, the geodesic manifold 
distance Es3 is used to replace the Euclidean distance as a novel distance 
metric in facial deformation algorithms. A static face model can be regar- 
ded as a manifold, which is a topological space that is locally Euclidean. 
The geodesic distance, or the shortest path, is a widely accepted concept 
in manifold learning to provide spatial understanding of nonlinear topolo- 
gy. We put facial animation into the framework of Bayesian regression. 
Bayesian approaches provide an elegant way of dealing with noise and un- 
certainty. 

5 . 4 . 1  Data Driven Facial Animation 

5.4.1.1 Motion Data Preprocessing 

Three-dimensional facial motion data may be generated by motion capture 
devices or reconstructed from two-dimensional motion data tracked in video 
streams. The face models can be obtained via 3D scanner or exported from 
modeling software. Highly realistic faces can be modeled from video or im- 
ages E18~. The face models and facial motion data may be from notably dif- 
ferent scenarios and must be aligned in the first step. 

Approximate affine transformations are computed and applied to facial 
motion data at each frame with respect to the correspondences between 
markers and face mesh vertices so as to align the three-dimensional propor- 
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tion and alleviate the structural disparity between the motion data and the 
face model, as shown in Fig. 5. 44. In motion capture context, several 
markers Will usually be added on the top of head for the purpose of global 
motion estimation, so that separation of the rigid movement and non-rigid 
expressions can be faster. 

Fig. 5.44 Facial motion data capture and driving. (a) The actor with 42 markers dec- 
orated in the face~ (b) Motion capture data captured by Hawk System~ 
(c) Deformable face model represented by 3D points, the points are the 
mapped motion data 

The concept of warping kernels was first proposed by Williams [19] as 
deformation initiators or feature points to drive facial animations. Here we 
refer to the facial motion markers which have been already mapped onto 
the neutral mesh as warping kernels to provide pivots of regressions. The 
problem of facial deformation can be formulated as estimating data approx- 
imate functions F(s,t,O) in nonlinear regression with sparse warping ker- 
nels, where s is an input vector indicating the original 3D coordinates of a 
vertex, t is a vector of the deformed results, and 0 is the hyper-parameter 
which must be learned from the sparse warping kernels. The approximate 

functions are estimated at each frame of facial motion data to generate se- 
quential facial animation. 

5 .4 .1 .2  Geodesic Manifold Distances 

Traditional regression techniques such as neural networks and radial 
basis functions favor the Euclidean distances for measuring the similarity 
between vertices in input space. However, the Euclidean distances are not 
suitable for modeling data distributed on complex geometry and topology 
such as human faces. As shown in Fig. 5 .45,  points on different sides of 

lips are close in the Euclidean metric (straight line segment on the right 
figure), but far away from each other in its actual topology and kinematic 
properties. 

Nonlinear manifold modeling techniques were developed recently during 
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Fig. 5.45 The Euclidean distance (straight line segment on the right figure) is not 
suitable for modeling distance between points on different sides of disconti- 
nuities. The geodesic distance (dot folding line segments on the right fig- 
ure) is proved to be a better approach to measure distances in globally non- 
Euclidean spaces 

the research on subspace learning and face recognition, including ISO- 
MAP,  LLE and Laplacian Eigenmap (LEM) .  ISOMAP Es~ performs non- 
linear dimensionality reduction by applying Multi-dimensional Scaling 
(MDS) on the geodesic distance matrix. LLE [9] and LEM E207 are local al- 

gorithms that represent nonlinear manifold by focusing on the preservation 
of local neighbour structure. Geodesic manifold distance, which is compu- 
ted as the shortest path, is a widely accepted concept in the field o{ mani- 
fold learning. A face mesh can be regarded as a manifold, which is a topol- 
ogical space that is locally Euclidean. Points may appear deceptively close 
by measuring their straight-line Euclidean distance, however far apart on 
the underlying manifold, as measured by their geodesic manifold dis- 
tances. 

We exploit the geodesic manifold distances to explore the complex ge- 
ometry and topology of human face models. We take the given face mesh 
as an undirected graph, where its nodes and arcs are represented by mesh 
vertices and edges respectively. The sparse matrix of the constructed 
graph has 22,984 non-zero entries in the 5 ,832X5,832  matrix in the neu- 
tral quadrangle mesh, i .e.  only 0. 068% non-zero entries. The geodesic 

distances are then computed as the shortest path ~0 between nodes vi and vj 

in the graph: 

~o - -  d i j  k ( vi , v; ) 

Furthermore,  we construct a distance map from feature points to all 
other points on the neutral mesh and stored {or later expression genera- 
tions for acceleration. The geodesic distance can be intuitively adopted to 
extend traditional regression processes such as RBF by replacing Euclidean 
distance )" with geodesic distance 8 in the approximate function, e.g. RBF 
approximate function with multi-quadrics. 
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N 

i = 1  

where xj is a vector representing the 3D coordinates of the input point,  

W =  ~wl, wz , ' " ,w . - ]  r are parameters ,  7ji is the Euclidean distance between 

the feature point and the input point,  and ai is the stiffness constant that  

regulates the local or global effects of the feature points. The geodesic dis- 

tances can accelerate the generation of facial animation by automatic mod- 

eling of the discontinuities, which is one of the key problems of data driven 

facial animation. Traditional facial animation methods facilitate affection 

volume masks,  which use virtual masks to represent different face regions, 

or other region segmentation techniques to model the discontinuities which 

may be difficult and tedious for users. Our method simplifies the prepro- 

cessing of deformable face models and can produce plausible results in both con- 

tinuous and discontinuous regions on face models, as shown in Fig. 5.46. 

Fig. 5.46 Generated anger expressions from facial motion data. Expression in the 
first row is generated via regression in Euclidean distance metric, where 
the lips (one of the most important discontinuities on human face) are 
stretched instead of opening mouth. The second row expression is from 
the same process except blending some Geodesic distance metric. The mo- 
tions of lips are correctly modeled with mouth open 

5 .4 .1 .3  Blending of Euclidean and Geodesic Distances 

A potential error may occur when the meshes contain only sparse triangles 
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or quadrangles, in which cases the geodesic distances may be discrete and 
result in undesirable artifacts and distortions. We solve this problem by 
blending the geodesic and the Euclidean distances formulated as: 

8o = w " 8o -& ( 1 - - w )  �9 Yo 

where w E  [-0,1] is the blending coefficient. The Euclidean distance 70 
works as a smoother part to eliminate the artifacts. The value of w can be 
decided empirically. 

5 . 4 . 2  Bayesian Regression 

While the geodesic manifold distance provides a tool for modeling the spa- 
tial structure of face models, the Bayesian regression can find the temporal 
features of facial animation. Although regression techniques like radial ba- 
sis functions are enough for providing facial deformation results under 
noise-free circumstances, the processes of facial motion capture and 3D 
face scanning can hardly be noise-free. Bayesian approaches to regression 
E21237 provide an elegant way of dealing with noise and uncertainty, as well 
as a framework of learning the statistical features of data. We use Bayesian 
approaches for exploring facial deformation driven by warping kernels, as 
shown in Fig. 5.47. 

Fig. 5.47 Bayesian marginalization is applied to eliminate noise in motion or model 
data. The artifacts resulted from noisy data in (a) are smoothed in (b) in 
the generated expression 

5.4.2.1 Framework of Bayesian Regression 

In Bayesian interpretation of the regression problem, a nonlinear function 
y ( s )  parameterized by the hyper-parameter 0 is assumed to underlie motion 
data { s ~"~ ,tn }n=IN where N is the number of observations, or feature points. 
We denote coordinates of feature points at the neutral frame by SN = 

{s (") }.=iN, and the correspondences at a target frame by three vectors tN-- 

{t.}.=lN for respective warping channels of x ,  y or z. The inference of y ( s )  

by inferring the hyper-parameter 0 is depicted by the posterior probability 
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distribution: 

P(OItN SN) P ( t N I O , S N ) P ( O )  
' = P ( tNISN)  (5-33) 

Minimizing the minus log of posterior probability distribution as an ob- 
ject function. 

0 = a r g  min( - - log  (P( tN ]O,SN)P(O) ) ) (5-34) 
0 

Maximize a Posterior (MAP)  and Maximum Likelihood (ML) are com- 
monly used approaches for predicting outputs. However,  they sometimes 
converge to local minima and are not convenient for generation of facial an- 
imations. Bayesian predictions can also be made without estimated value of 
O by marginalizing over the hyper-parameter. We perform integrations in 
equation (5-35) by sampling the possible values of 0 from P(0]  tN, SN) u- 
sing Markov chain Monte Carlo method of Hybrid Monte Carlo. The sam- 
piing process saves 200 sampled values of the hyper-parameter. 

] tN,SN) = [P(tN+I ] O,SN)P(O I tN,SN)dO (5-35) P(tN+I 
J 

5.4.2.2 Modulation of Covariance Matrix with Geodesic Distances 

There are many choices of covariance matrix under the condition of non- 
negative definite property for any set of points {s<l~, .." ,s <~ }. We empiri- 
cally choose the following covariance matrix to adopt the geodesic dis- 
tances. 

d 

I 2 I , w , ( s ~  ~ - ) + C(s <i) s <~)) = v0exp - - 2 -  ~=l 

ao + a~ 2sJ~>sJ ~; + v ~ p ( i , j )  (5-36) 
l = l  

where e = log (v0, v~, w~, " ' ,  w. ,  a0, a~ ) represents the hyper-parameter 
since the variables in equation (5-36) are positive scale parameters, e cor- 
responds closely to the hyper-parameter in neural networks to be adapted 
through learning. 

The covariance function consists of three parts: the weighted sum 
term, the linear regression term (including a0 and a~) and the noise term. 
The first term expresses that the nearby inputs produce similar outputs 
and that the weights of w~ are usually set to ones. This leads to the equa- 
tion below: 

d 

C(S (i) ,S (j)) - - -  v0exp -- -~- 2 ( -- ) + 
l = l  

d 

ao -t- al 2s~i)s~ j) -Jr- V l p ( i , j )  (5-37) 
/ = 1  
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where 
d 

~o = ~ (s~ ~ - s~ ~ )~ ( 5 - 3 8 )  
/ = 1  

is the squared Euclidean distance. 
We substitute the geodesic distance 80 = d i j k  (s  <i~ - -  s (j~) for equation (5- 

38) and get. 

{ 1 } 
C ( s  ~i~ ,s (j~) = v0exp - -  y d i j k  (s  <~ - s ~ )2 + 

d 

ao + al 2 s ~ s ~  j~ + v ~ p ( i , j )  (5-39) 
l = 1  

With the covariance matrix C, equation (5-34) can be deduced for N 
training pairs as.. 

1 1 t~ C_ l tN_~_N 0=arg0min(-~-log det ( C ) + y  -2-log 27r) (5-40) 

5 . 4 . 3  Results and Discussions 

The data used in this section are captured with Motion Analysis motion 
capture system. Facial motion data is captured with a set of 42 markers 
(including 3 markers on a head mounted jig for global motion estimation) 
at a frame rate of 60 fps. Eight representative expressions are extracted, 
as shown in Fig. 5.48, and used to drive an ordinary quadrangle face mesh 
via manifold Bayesian regression, as in Fig. 5.49. The results show that 
Bayesian method for regression and the geodesic distances are suitable for 
representing the underlying deformation paradigm and the complex topolo- 
gy of human faces. As shown in Fig. 5.49,  the generated expressions are 
smooth and the correct movement of discontinuities in the mouth region 

Fig. 5.48 Eight key expressions extracted from facial motion data. (a) Neutral; (b) 
Anger; (c) Disgust; (d) Eye-close; (e) Fear; (f) Sad; (g) Smile with 
mouth closed; (h) Smile with mouth open 
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Fig. 5.49 The comparison of the results by both Euclidean and Bayesian regression 
for different expressions. The left ones of pairs are generated in the Eu- 
clidean distance metric only and the right ones are in the mixture metric of 
geodesic distances and Euclidean distances 
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shows the power of manifold. The situation in the eyes' regions may be 
confusing as they show hardly any difference between the left and the right 
expressions. The reason is that they differ from the mouth region in the 
neutral expression as they have proper spatial gaps between the upper and 
the lower eyelids by which the Euclidean distances can equally well express 
the discontinuities. 

In this section, we present a novel and effective method for driving fa- 
cial animations based on motion data. Geodesic manifold distances are a- 
dopted in the framework of Bayesian learning to automatically model the 
discontinuities and complex topology of human faces. After the covariance 
matrix is properly modulated with the geodesic distances, Hybrid Monte 
Carlo method is t hen  used to compute the integral of probabilities to pre- 
dict results under noisy circumstances. The techniques in this section al- 
low facial motion data to be applied to any facial mesh. Previously, adap- 
ting facial motion data to an individual mesh required much more artistic 
intervention. 

Techniques in this section can be used in many scenarios, such as hu- 
man computer interaction and digital entertainment. They also have pro- 
spective applications in data compression for 3D streaming media, or dis- 
tant meeting {or facial communication between participants as the compu- 
ting power grows. 
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Intelligent Techniques 
ment of Motion Data 

for Processing and Manage- 

Motion Capture (MoCap) systems are widely used in computer anima- 
tions, simulations and video games. Recently, a large commercial MoCap 
database is available and it will be of great importance to the reusability of 
motion data as well as the efficiency of computer animations. 

Several key techniques in the MoCap database system include. (1) mo- 
tion data prediction such as data format conversion, metadata segmenta- 
tion and extraction, etc; (2) motion data abstraction, such as key-frame 
extraction, index building, keyword annotating; (3) motion data retrieval. 

But for the time being, some problems still exist in the construction 
and operation of the database which we cannot overlook. For example, too 
much human interaction is involved thus causing low efficiency in its intel- 
ligent functions. All these drawbacks are embodied mainly in three aspects 
as below. First, operators need to do the segmentation and extraction 
work of motion data by hand during the motion data preprocessing stage, 
which will cause low efficiency. Second, key-frame extraction by hand for 
motion data has its difficulty and inaccuracy to a certain extent. Mean- 
while, data retrieval is based on keyword annotating, and such labor-in- 
tensive and subjective job would cause the inaccuracy of the results. 
Third, data retrieval is dependent on keyword-based data retrieval which 
demands annotating every motion data sequence by hand and this is abso- 
lutely time-consuming and tedious work. 

Basically speaking, 3D motion data can be considered one kind of multi- 
media data. After so many years'  study on intelligent analysis and man- 
agement of multimedia data, we have proposed several techniques concern- 
ing the MoCap database, specifically for automatic segmentation of 3D hu- 
man motion data into primitive actions, key-frame extraction from motion 
capture data and content-based motion capture data retrieval technique. 
We will describe in detail the above techniques in the following sections. 
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6. 1 Automatic Segmentation of 3D Human Motion Data into 
Primitive Actions 

Automatic segmentation of 3D human motion data into primitive actions 
means segmenting long human motion sequence into divided primitive ac- 
tions (such as walking, jumping, kicking andpunching)  so that each mo- 
tion clip has its individual semantic meaning. These divided clips are then 
stored into MoCap database so as to be conveniently manipulated in anima- 
tion authoring systems or be retrieved based on keyword or visual content. 
Why not do we just capture individual primitive actions and save the data 
separately to simply avoid segmentation? The reasons are as follows. 

�9 Long motion sequences are more comfortable for actors to perform 

and contain more natural transitions from one action to the next. 
To get a more natural motion over a long time, the only choice is to 
capture a long motion sequence. 

�9 Capturing a long motion sequence is more efficient than capturing 

short motion clips one by one. 

6 . 1 . 1  Overview of Motion Data Segmentation 

Motion data segmentation has always been the hot research area. Existing 
motion (activity) segmentation or recognition methods can be categorized 
into two fields. (1) segmenting or recognizing different human activities in 
video streams E1,2~ ; (2) segmenting or recognizing distinct human activities 
in 3D motion data. In video streams, motion segmentation and recognition 
are mainly used for human activities analysis and surveillance. And for 3D 
motion data, motion segmentation and recognition are mainly used for ani- 
mation production. In this chapter, our goal is to segment long 3D human 
motion sequences into divided primitive actions, so here we only focus on 
the related work that shares this goal. 

Arikan, et al. E3~ proposed a model-based approach to motion annota- 
tion. In order to annotate all motion data in database with different de- 
scription words, such as "running" and "walking",  they built a Singular 
Value Decomposition (SVM) classifier. Based on the SVM classifier and 
some hand-annotated training samples, a large set of motions could be an- 
notated automatically. And also this method could be used to segment mo- 
tion data. Kahol, et al. E4,s~ proposed an algorithm called Hierarchical Ac- 
tivity Segmentation. This algorithm employs a dynamic hierarchical lay- 
ered structure to represent the human anatomy and uses low-level motion 
parameters to characterize motion in the various layers of this hierarchy. 
Then a naive Bayesian classifier was applied to learn the criteria for gesture 
segmentation that is estimated from empirical data provided by experts. 
However,  the performances of these approaches heavily rely on the anno- 
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tated training samples or empirical data from experts. Lu, et al. E61 presen- 
ted a two-threshold, multidimensional segmentation algorithmfto automat- 
ically decompose a complex motion into a sequence of simple linear dynam- 
ic models. But this algorithm was developed for repetitive motion instead of 
general and non-repetitive human motion. 

Many researches proposed that low-level motion segmentation could be 
derived by some straightforward methods. Fod, et al. [-71 segmented human 
arm movement data into primitives by detecting zero crossing of angular 
velocities. Pomplun and Mataric E81 used the same idea, in which they de- 
scribed a joint-space based segmentation and comparison algorithm. The 
limitation of these approaches is that a longer motion sequence will be di- 
vided into more sections than the actual number of primitive actions. 
Wang, et al. [-91 explored a more sophisticated technique which segmented 
motion sequences into atomic components and clustered them together u- 
sing a Hidden Markov model. 

Barbic, et al. E101 assumed that different simple human motions should 
have different intrinsic dimensionality, so they assigned a cut when the in- 
trinsic dimensionality of the motion's  local model suddenly increase based 
on Principal Component Analysis (PCA) technique. Further they proposed 
a Probabilistic PCA (PCA) method for segmentation based on the assump- 
tion that the Gaussian models of two separate behaviors are quite differ- 
ent. These two methods work well except that the computation efficiency 
is a little low. For each new incoming frame, system runs the PCA or PP- 
CA algorithm again. And in [10-], they proposed a Gaussian Mixture 
Model (GMM) segmentation method based on the assumption that the 
frames from different simple motions form separate clusters, and each 
cluster can be described reasonably well by a Gaussian distribution. But in 
this method, the number of clusters should be set by user in advance, 
which is not practical for segmenting a large motion database where many 
motion sequences with different number of behaviors are included. 

All the methods above have their own shortcomings. Now in the fol- 
lowing section a very simple and easy way to implement segmentation tech- 
nique will be presented, which can achieve higher precision and efficiency. 
A nonlinear dimensionality reduction technique is used to map original mo- 
tion sequences into low-dimensional manifold, and then clustering tech- 
niques are applied to segment primitive actions apart. 

6 . 1 . 2  An Automatic 3D Human Motion Data Segmentation Approach 
Based on Nonlinear Dimensionality Reduction 

6.1.2.1 Motion Data Preprocessing 

Human body is modeled by an articulated skeleton with some rigid limbs 
which has the same topological structure as human body. In this skeleton, 
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it is defined that the body contains 16 joints that are constructed by a tree 
structure. Joint root is the root o{ the tree and those paths from root to all 
endmost joints in human skeletal model form sub-trees of root. Joint root 
is represented by a 3D translation vector and a 3D rotation vector. The 

translation o{ joint root determines the current position of the skeleton 

while the rotation o{ joint root determines the overall orientation o{ the 
skeleton. For the other joints,  rotation describes their orientation in the 
local coordinates of their parent joints. The factors all above determine the 
posture of human body. A motion sequence M with n frames is presented as 

M =  {F(1)  , F ( 2 )  ,.. .  , F ( t )  ,. . .  , F ( n )  } (6-1)  

F ( t ) =  {p( t ) ,qa  ( t ) , " "  ,qm (t)} (6-2)  

where F(t)  is the tth frame in motion sequence M,  p( t )  is the translation 
of the root joint, qi(t) is the rotation of joint i in frame t, m is the number 

of joints used in human skeleton. 
All of the motions are performed by a real actor and recorded by an op- 

tical motion capture system at frame rate 120 fps. Each motion M is pres- 

ented by the same skeleton with 51 DOFs (corresponding to 16 joints of 
human body, see Fig. 6 .1) .  Before inputting motion sequence M into seg- 
mentor ,  we filter out the translation and rotation o{ root joint which pres- 
ent the overall position and orientation of human skeleton and thus have no 
relation with specific primitive action. So in original motion data space, 
each frame of motion sequence is represented as a vector of 45 dimensions. 

Fig. 6.1 The skeleton model Fig. 6.2 Distance matrix of motion 

6.1.2.2 Coarse Segmentation 

Fig. 6.2 gives the distance matrix o{ one motion sequence which represents 
the distances between each frame pairs in this motion sequence. This mo- 
tion sequence has about 3,000 frames and contains 4 primitive actions. As 
shown in Fig. 6 .2 ,  we can intuitively judge that this motion sequence con- 
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ta ins  4 or  5 d i f f e r en t  p r imi t i ve  
o 

ac t ions  because  t h e r e  are  s o m e  

clear  b o r d e r l i n e s .  ?5 

Life w o u l d  be eas ie r  if the  

edge  d e t e c t i o n  m e t h o d s  could  see 

t h e s e  b o r d e r l i n e s  c lear ly .  H o w -  

eve r ,  t h e r e  is so m u c h  noise  in 

d i s t ance  m a t r i x  t h a t  t h e s e  b o r d e -  

r l ines  c anno t  be d e t e c t e d  accu-  

r a t e l y  by  m o s t  of t he  edge  de tec -  o 

t ion  m e t h o d s .  In  o r d e r  to s impl i -  

fy th is  p r o b l e m ,  we  j u s t  use  the  

d i s t ance  cu rve  of the  f i r s t  f r a me  

in m o t i o n  sequence .  T h e  dis-  

t ance  cu rve  of specif ic  f r a m e  re-  

Frame 

Fig. 6 .3  Distance curve (the 1st frame). 
This figure shows the distances between the 
1st frame and all rest frames in the same mo- 
tion sequence. The box represents the can- 
didates of coarse segmentation point 

p r e s e n t s  the  t e m p o r a l  d i s t ance  

s e q u e n c e s  b e t w e e n  th is  f r a m e  and  all r e s t  f r a m e s  in t he  s am e  m o t i o n  se- 

q u e n c e ,  which can be considered as a slice of distance mat r ix  (see Fig. 6 . 3 ) .  

If we  cons ide r  the  d i s t ance  cu rve  in Fig.  6 . 3  as d igi ta l  s i gna l s ,  we can 

de t ec t  the  coarse  s e g m e n t a t i o n  po in t  at  t he  p os i t i ons  w h e r e  s ignals  change  

s u d d e n l y  ( see  the  b o x e s  in Fig.  6 . 3 ) .  F o l l o w i n g  is the  p s e u d o c o d e  of ou r  

heu r i s t i c  m e t h o d  of coarse  s e g m e n t a t i o n .  

M = LoadMotion ( . . . ) ;  
D -- DistanceMatrix ( D ); 
len = Length ( M ) ; 
curFrm = 1 ; 
while ( curFrm % len ) 
( 

/ / l o a d  motion sequence from MoCap database 
/ /ca lcula te  distance matrix of motion sequence 
/ / g e t  the length of this motion sequence 
/ / s e t  current frame number to first frame 

curDistCurv--  D ( curFrm, : );  
/ /  pick out the curFrm-th distance curve from D 

interval = 120; / /  set number of frames to be processed for each 
iterative step 

/ /ca lcula te  the max-min difference for the current 
motion ( from curFrm+60 to curFrm+240) 

diff -- MaxMinDiff ( curDistCurv ( curFrm+sp  �9 curFrm+ep ) );  
i -- curFrm + ep; 
while ( i < len ) 

[- maxvalue maxindex -] = max ( curDistCurv ( i : i + interval ) );  
1- minvalue minindex ] = min ( curDistCurv ( i .. i + interval ) ) ;  
if ( maxvalue- minvalue ) > = diff ~ a 
{ 

segPt = i + fix ( ( maxindex + minindex ) / 2 );  
break; 
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if ( maxvalue- minvalue ) < =  diff * t3 

segPt = i Jr- fix ( ( maxindex q- minindex ) / 2 )~ 
break~ 

} 

i -- i -4- interval, 
} 

Save ( segPt )~ 
curFrm = segPt 

For each new start  point curFrm, it firstly reads in the distance curve 
of curFrm between frame curFrmff-sp and frame curFrmq-ep to calculate 
the max-min difference value d i f f  which we consider as the distance chan- 
ging range of current action. Usually we set s p = 6 0  and ep= 240 and this 
initial calculation means that  each action to be segmented should last at 

least 2 seconds for the algoritl~m to detect it. Then at each iterative step,  

the algorithm reads in the following interval (we use 120 frames in experi- 

ments)  frames of distance curve and calculates the max-min difference val- 

ue of them. If the new difference value is much larger (or  smaller)  than 

d i f f  (a and j? are used to control these thresholds ,  in experiments  we set 
a = 0 . 7 5  and p =  1 . 2 5 ) ,  a new coarse segmentat ion point should be placed 
at the middle between the max value and the min value. For a candidate set 
of coarse segmentat ion points,  if there are two points whose distance is 
smaller than 240 frames,  we should merge them to one point because we 
assume that  each action to be segmented should last at least 2 seconds (240 

frames).  
Now we can get the coarse segmentat ion point between every two prim- 

itive actions in the motion sequence by the heuristic segmentat ion method 

above. But unfortunately,  the coarse segmentat ion points are not accurate 

enough for primitive data segmentation. In the next section, a method 

combining ISOMAP and K-mean clustering will be described which can 

segment the motion sequence into primitive actions accurately. 

6.1.2.3 Accurate Segmentation Based on Nonlinear Dimensionality Reduc- 
tion and K-mean clustering 

Human motion data resides in high-dimensional space. For example,  a mo- 
tion clip with 30 frames and 51 DOFs is represented as a vector with 1,530 

dimensions. This leads to two problems.  (1) high-dimensional data results 
in more computation time~ (2) high-dimensional data have complex struc- 
ture and is more difficult to analyze. So dimensionality reduction should be 

brought in here to get high efficiency and precision. 
The classical techniques of dimensionality reduction, such as PCA and 

Multi-dimensional Scaling ( M D S ) ,  are easy approaches to implement ,  effi- 
ciently computable and guarantee to discover the true structure of data ly- 
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ing on or near a linear subspace. PCA finds a low-dimensional embedding 
of the data points that best preserves their variance as measured in the 
high-dimensional input space. Classical MDS finds an embedding that pre- 
serves the interpoint distances, equivalent to PCA when those distances 
are Euclidean. But unfortunately,  human motion data are very complex 
and have nonlinear structures that are invisible to PCA or MDS. So if PCA 
or MDS is applied to reduce the dimensionality of human motion data, 
much useful information will be discarded. 

Here we use ISOMAP Ell] to do this challenging job, which combines 
the major algorithm features of PCA and MDS--computa t ional  efficiency, 
global optimization, and asymptotic convergence guarantees,  with the 
flexibility to learn a broad class of nonlinear manifolds. ISOMAP can not 
only reduce the dimensionality of high-dimensional input space, but also 
find meaningful low-dimensional structures hidden behind their high-di- 
mensional observations (See Fig. 6 .4 ,  classical "Swiss roll" illustration of 
ISOMAP) .  For the detailed ISOMAP algorithm please refer to [11].  

As we saw earlier, motion data sequences in original space lie on high-dimen- 
sional, twisted and folded manifold, which makes it very difficult to cluster sim- 
ilar poses together to form primitive actions. But after nonlinear dimensionality 
reduction, segmentor can easily distinguish dissimilar poses by some simple 
clustering techniques, such as K-mean [12] clustering technique. 

In Fig. 6 . 5 ,  a motion sequence with about 600 frames illustrates the 
power of ISOMAP. This motion sequence contains two primitive actions 
(normal walking motion firstly and then followed by a side-walking mo- 
t ion) ,  and there is a natural transition between them. After nonlinear re- 

Fig. 6.4 The "Swiss roll" data se t  [-11]o (a) For two points on a nonlinear manifold, 
their Euclidean distance in the high-dimensional input space may not accu- 
rately reflect their intrinsic similarity, as measured by geodesic distance a- 
long the low-dimensional manifold; (b) The two-dimensional embedding re- 
covered by ISOMAP. Straight line in the embedding represents simpler and 
clean approximations to the true geodesic paths than do the corresponding 
graph paths 
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Fig. 6.5 Motion sequence in low-dimensional (3D) manifold. (a) Low-dimensional 
embedding of original motion sequence after ISOMAP; (b) K-mean cluste- 
ring technique is applied to low-dimensional embedding. The left "stars" 
correspond to the normal walking motion in original motion data space, and 
the right "dots" correspond to the side-walking motion in original motion 
data space 

duction by ISOMAP (see Fig. 6 .5  ( a ) ) ,  we can get the low-dimensional 

embedding of original motion sequence with a very simple structure.  Then 

K-mean clustering technique is applied to cluster the similar points in low- 
dimensional embedding together to form two primitive actions (see Fig. 6. 

5 (b ) ) .  After clustering we can see that the straight line (consists of some 
points) between two point clouds represents the transition between two 
primitive actions and the segmentat ion point is found in the middle of this 
line, which is very intuitive. 

Fig. 6. 6 gives another more complex example. This motion sequence 
contains two very similar primitive actions and there is a natural transit ion 
between them. Picture (a ,  b, c) is a knocking-floor motion (4 repeated 
cycles) and picture (d,  e, f) is the following brushing-floor motion (5 re- 

Fig. 6.6 (Left) Tow primitive actions with natural transition. (a, b, c) is a knoc- 
king-floor motion, (d, e, f) is a brushing-floor motion; (Right) Low-di- 
mensional (3D) embedding of original motion sequence after ISOMAP. The 
circled dot is the segmentation point found by K-mean clustering 
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peated cycles). As shown in the figure, the pose in picture (c) is very sim- 
ilar to that in picture ( e ) ,  but actually they belong to different primitive 
actions and occur at different time. This observation ineans that if we clus- 
ter all of the poses (frames in motion sequence) in original motion data 
space directly, it will be very difficult to get the right segmentation point. 
Clustering results in Fig. 6.7 prove that our supposition is right. The left 
segmentation is the K-mean clustering result from low-dimensional embed- 
ding o{ original motion sequence after ISOMAP, and the right segmenta- 
tion point can be detected easily at the time of signal changing (see Fig. 6. 
7 (a ) ) .  But given tl~e K-mean clustering result from original motion se- 
quence without ISOMAP, the right segmentation point cannot be detected 
(see Fig. 6.7 (b) ) .  The valleys of signals are the frames around the pose in 
picture (e) in Fig. 6.6, which are clustered to knocking-floor motion. 

Having found the coarse segmentation point between every two primi- 
tive actions in the previous section, we can deliver each pair o{ primitive 
actions to the above method to get accurate segmentation point. 

Cluster Cluster 

2 

~" 0 0 Frame Frame 
(a) (b) 

Fig. 6.7 Results from K-mean clustering. (a) K-mean clustering result from low-di- 
mensional embedding of original motion sequence after ISOMAP; (b) K- 
mean clustering result from original motion sequence without ISOMAP 

6 . 1 . 3  Results and Discussions 

A prototype system by Matlab is developed to test this method, which 
runs on a PC with PentiumIV 2.8 GHz CPU and 1 G memory. And a Mo- 
Cap database with 20 motion sequences (72,055 frames) is used in this ex- 
periment. Each sequence includes at least 2 or more actions. Most of the 
typical human actions are performed by actors and stored in these motion 
sequences, such as walking, running, kicking, punching, jumping, clean- 
ing window, washing floor, and sweeping floor. In these experiments, we 
also develop a prototype system with PPCA method E~0? by C-b-+ and com- 
pare the performance of our method with those of PPCA method and tran- 
sitions selected by human manually. Fig. 6.8 shows some experimental re- 
sults. Figs. 6.9 and 6.10 show key poses corresponding to each primitive 
action of one of the motion sequences in MoCap database. 
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Fig. 6.8 Some segmentation results from our experiments, comparing with ground- 
truth from human manual segmentation and PPCA method. Each figure 
corresponds to one motion sequences from the MoCap database. Human 
gives a ground-truth of segmentation for every motion sequence, which is a 
motion transition range. All segmentation points falling into these ranges 
are acceptable 

Fig. 6.9 Key poses correspond to primitive actions of one of motion sequences from 
MoCap database. Primitive actions (a) to (h) are. walking, side-walking, 
sweeping floor, walking, knocking floor, washing floor, cleaning window, 
and walking 

Table  6.1 compares the performance of our method with those of PPCA 

and human manual  segmentat ion.  As shown in the table,  our method gets 

higher precision than PPCA while PPCA gets higher recall than our meth-  

od. There  are two reasons for this phenomenon.  

Fi rs t ly ,  PPCA method usually detects more incorrect segmentat ion 
points than our method (see Fig. 6 .8  ( b ) ,  (d) and ( e ) ) ,  which results  in 

lower precision. The  PPCA method is based on the assumpt ion that  Gau- 
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Fig. 6.10 Segmentation results of motion sequence. Primitive actions (a) to (d) are. 
waving, boxing, side-kicking, and forward-kicking 

Table 6.1 Comparison of performance of our method with those of PPCA 
and human manual segmentation 

Method Precision Recall Average Time 

ISO+ K-mean 93.9 % 92.5 % 4 s/clip (Matlab) 

PPCA 91.5% 93.2% 10 s/clip (C-H-) 

Human 12 s/clip 

ssian models of two distinct actions should be quite different, and the in- 
trinsic dimensionality of a motion sequence containing a single action 
should be smaller than that containing multiple actions. PPCA models the 
variation of motion data distribution linearly and is sensitive to the varia- 
tion of data distribution. So if the range o{ the same action becomes larger 
or smaller than anterior action data, PPCA will give us a new segmenta- 
tion point. But our coarse segmentation algorithm calculates the Euclidian 
distance between different poses directly, which can hide the reasonable 
range changing of the same type of action by setting appropriate threshold 
parameter. 

Secondly, our method occasionally misses some correct segmentation 
points (see Fig. 6.8 (c) ( d ) ) ,  which results in a lower recall. It assumes 
that original motion data reside in a high-dimensional manifold, which can 
be mapped into a low-dimensional embedding and classified by normal clus- 
tering techniques. But for some action pairs which have many very similar 
poses, this method will not work,  because these similar poses from differ- 
ent actions will assemble in the same local region of low-dimensional em- 
bedding. As Fig. 6.11 shows, two kicking actions, side-kicking and for- 
ward-kicking, are mapped into corresponding low-dimensional embedding. 
These two actions both start and end with standing pose, and all the 
standing poses are mixed in the low-dimensional embedding (see the rec- 
tangle of Fig. 6.11).  So this method cannot accurately segment these two 

kicking actions apart. 
Table 6.1 shows that the efficiency of our method is much higher than 

PPCA method and human manual segmentation. In PPCA method, for 
each new incoming frame the system will run the whole PPCA segmenta- 
tion algorithm again and judge whether there is a segmentation point. But 
in our method, we just compute distance curve for each interval with 120 
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Fig. 6.11 Low-dimensional (3D) embedding of two kicking actions. Solid cycle is a 
side-kicking motion, dotted cycle is a forward-kicking motion. Points in 
box are standing poses 

frames and judge whether there is a coarse segmentation point. If so, ISO- 
MAP and K-mean clustering algorithm will be applied to find fine segmen- 
tation point. Suppose that there is an original motion sequence with N 
frames and M distinct actions, PPCA method will run the whole PPCA 
segmentation algorithm (including standard PCA subspace construction, 
Gaussian model construction, computing Mahalanobis distance, etc. ) 
( N - - M X 2 4 0 ) t i m e s  (240 is the initial number of frames for PCA subspace 
construction).  For our method,  we only run coarse segmentation algo- 
rithm about ( ( N  -- M • 240 ) /120)  times (240 is the initial number of 
frames for computing the distance changing range of current action and 120 
is the value of interval parameter for coarse segmentation point detection),  
and run ISOMAP and K-mean clustering algorithm M times. 

Although our method has high efficiency, it has drawbacks and some 
limitations. For action pairs which have many very similar poses, our 
method will miss the segmentation points. One potential solution for this 
problem is to take temporal information into account when clustering tech- 
nique is applied, which means that temporal adjacent poses ( f r ames )  

should have more probability to belong to the same action. The similar po- 
ses which lie far away from each other on temporal axis should not be clas- 

sified into the same action. 

And if there is a very long motion sequence in which user just wants to 
use several action clips, i t ' s  not necessary to segment it into many distinct 
actions wholly. We just hope that the system can pick out the desired ac- 
tion clips for user. So in future,  we will add more user interactive opera- 
tion into our method which means when users browse a very long motion 
sequence, they can select one or more frames interactively and then the. 
system will pick out the distinct action clips which contain these frames au- 

tomatically. 
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6 .2  Motion Data Abstraction 

With the rapid development o{ motion capture system, motion capture data 
can be easily acquired. However, the high dimension, loose structure of 
motion data prevent it from efficient application. The high efficiency in 
motion data management is the key to solve the problems above. 

Motion data abstraction means extracting the low-dimensional {eatures 
of original 3D motion data for the use of database indexing. This idea 
stems from that in content-based multimedia retrieval. According to pres- 
ent research advances, most o{ the work is concentrated on motion data 
key-frame extraction, which means extracting key-frame postures (such as 
extreme postures) that can well describe the current motion clip from raw 
motion data sequences, similar to the approach o{ video key-{rame extrac- 
tion. In this way, the retrieved key-frames are the abstraction o{ raw mo- 
tion data sequences. 

6.2 .1  Overview of Motion Key-frame Extraction 

At present, massive motion data have been acquired by MoCap systems 
and these data is extensively used in different areas such as computer 
game, computer animation and medical simulation. Motion data are cap- 
tured in high sampling frequency, so key-frame (key posture) extraction is 
important for its compressing, storage, retrieval, browsing and motion 
editing. 

Key-frame extraction has been extensively explored recently in multi- 
media information processing where key-frames are used in video browsing 
and content-based video retrieval applications E13 is]. 

However, in the field of motion capture, key-frames describe three-di- 
mensional skeleton data rather than two-dimensional temporal data in 
video analysis field. At present, motion data key-frame extraction tech- 
niques fall into two categories, uniform sampling and adaptive sampling. 

The simplest idea for key-frame extraction from motion data sequence is 
uniform sampling, which extracts key-frames with uniform sampling inter- 
vals. This method is simple and costs less time, but it cannot summarize 
the original human motion effectively because of over-sampling in segments 
with less pose changes or under-sampling in segments with great pose 
changes. Over-sampling results in data redundancy and under-sampling 
leads to loss of motion information. 

Adaptive sampling methods can tackle this problem. Adaptive sampling 
extracts key-frames according to per{ormer's pose changes rather than mo- 
tion time. These methods result in less key-frames in motion segments 
with less pose changes and more key-{rames in motion segments with great 
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pose changes so that they summarize original human motion more effec- 
tively than the uniform sample method. To use this method, an error tol- 
erance should be specified as the distance criterion. This method summari- 
zes original motion effectively, but it extracts key-frames regardless of hu- 
man motion~s geometric meaning so that the extracted key-frame collection 
cannot guarantee the consistency between similar motions. In addition, er- 
ror parameter should be specified manually before using those methods to 
extract key-frames. Some researchers used clustering techniques to extract 
key-frames. Liu, et al. E16] proposed a clustering-based method to extract 
key-frames adaptively. In this method, a similarity measurement between 
two frames is defined. Using the defined similarity, N frames of motion 
data are classified into K clusters and the first frames o{ each cluster are 
considered key-frames. In clustering, a specified error threshold deter- 
mines the number of cluster collections (key-frames).  Shen, et al. E177 pro- 
posed a frame distance which was defined as the total amount of rotation of 
all articulations on human body and chose key-frames by means of compa- 
ring frame distance of every two adjacent frames. The method proposed by 
Lim and Thalmann E~8] also falls into this category. They treated motion 
data as high-dimensional curves, and then applied a simple curve simplifi- 
cation algorithm to extract key-frames. There are two major aspects we 
need to pay attention to for these adaptive the key-frame extraction meth- 
ods. One is how the motion~s physical features can be efficiently represen- 
ted, and the other is how to quantitatively analyze key-frame extraction 
methods. 

In order to deal with motion data, several motion feature representa- 
tions have been proposed. Liu, et al. E16] applied a hierarchical motion rep- 
resentation. All joints in human skeleton are divided into 5 layers and par- 
ent joint is more prominent than child joint. Lee, et al. E19] described a two- 
layer structure for representing human motion data. The lower layer is a 
Markov process that retains the details of the original motion data, while 
the higher layer is a statistical model that provides support for the user in- 
terfaces by clustering the data to capture similarities among character 
states. The two representations generalize motion data, but motion ~s 
physical features cannot be represented clearly. Chui, et al. E20] proposed 

local spherical coordinates relative to the root orientation as the segment 
posture of each skeletal segment. This representation achieves affine in- 
variance of body transformations and decreases the dimension of motion 
feature. However,  every skeletal segment is represented by two parame- 
ters which cannot benefit to observe posture of each skeletal segment. 
Mueller, et al. E2~] introduced 31 Boolean features expressing geometric re- 
lations between certain body points of a pose. This method can represent 
motion~s physical feature very well, but the number of features is too large. 

In order to quantitatively analyze key-frames, some researchers pro- 
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posed quantitative indices such as error rate and compression ratio. As 
mentioned above, Liu, et al. used a threshold to determine whether a 
frame belongs to a certain cluster; Shen, et al. computed the distance be- 
tween current frame and the last frame in the key-frame collection and then 
compared this distance with a certain threshold to judge whether it belongs 
to key-frame~ Lim and Thalmann used a simple curve simplification algo- 
rithm to extract key-frames in which error tolerance should be specified as 
the distance criterion. Error (threshold) parameters specify error require- 
ment in the methods above and user could set these parameters according 
to different error requirements so as to acquire different data compression 
ratios. However, because of the difference in motion velocity and motion 
styles of different motion sequences, there is no exact one-to-one corre- 
spondence between error requirement and compression ratio. Consequently, 
for a user paying attention to key-frame number (compression ratio), different 
error parameters should be experimented repeatedly to meet the specified error 
requirement in the key-frame extraction. This is time-consuming. 

Key-frame set of motion data, as special temporal signal, can success- 
fully abstract the original data sequences. Moreover, comparability is re- 
quired between key-frame sets of similar motion types for the convenience 
of subsequent work such as indexing and editing. However, all the key- 
frame extraction methods mentioned above have shortcomings in motion 
feature expression in that they fail to take into account the structure infor- 
mation of the original motion sequences, thus lose the physical characteris- 
tics of motion data. So, key posture clusters respectively extracted from 
two motion sequences of similar motion types cannot meet the requirement 
of comparability. Furthermore,  further processing such as indexing and 
editing will be influenced by the unsatisfied key-frame collections resulting 
from these methods. 

Based on the analysis above, a novel layered curve simplification algo- 
rithm is developed for key-frame extraction. In this algorithm, motion fea- 
tures are described by bone angle which is defined as the angle between the 
limb bone and the central bone. Then according to the motion trajectory of 
bone angles, some possible extreme postures are chosen as key-frame can- 
didates. Candidate key-frames should be refined by the layered curve sim- 
plification algorithm according to different error requirement before gai- 
ning final key-frame collection. A self-adaptive error parameter extraction 
method is also developed for the users who care only about compression ratio. 

6. 2. 2 Key-frame Extraction from MoCap Data Based on Layered 
Curve Simplification Algorithm 

6.2.2.1 Motion Describing Model 

A simplified human skeleton model is defined as Fig. 6 .12 (a ) ,  which con- 
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Fig. 6.12 Human skeleton and segments 

tains 16 joints that are constructed in the form of tree. Joint r o o t  is root of 
the tree and those paths from root to all endmost joints in human skeletal 
model form sub-trees of root. Joint root is represented by a 3D translation 
vector and a 3D rotation vector. The translation of joint root determines 
the current position of the skeleton while the rotation of joint root deter- 
mines the overall orientation of the skeleton. For the other joints, rotation 
describes their orientation in the local coordinates of their parent joints. 
The factors all above codetermine the posture of human body. 

Motion data M can be viewed as human posture sequence sampled tem- 
porally and discretely, where every sampling point as a frame described by 
16 joints. In this way, at arbitrary time i, human body posture can be 

_(1) R 3 �9 p~I~ER 3 and ri E describe the F i  = [p(x~i , r~(l~ , ri-(z~ , . .  , r~ 16~ -], in which, 
position and orientation (i. e. translation and rotation) of the root respec- 
tively, r~ ~ E R 3 , j = 2, . . ' ,  16 describes the orientation (rotation) of non- 
root joints. At arbitrary time i, the position of non-root joint N~ can be at- 
tained by 3D translation in form of the following equation: 

p~J> : T~/r~176 i(r~176 . .  �9 T(0grandp . . . .  t) ---,i~(grandp . . . .  t) Jt0qF(P . . . .  t) •-,i ~ ( p  . . . .  t ) p  (0j) ( 6 - 3  ) 

where p~J) is the world coordinate value of joint N~ at time i. ~root), --~R~r~176 
are the translation matrix and rotation matrix of root joint at time i and 
they are given by p~l>, r~-(l> respectively; is the translation matrix of 
joint Nk (Nk is an arbitrary joint from root joint to NS joint in the skeleton 
model) generated by the offset in the local coordinate of its parent joint. 
R~ k> is the rotation matrix of joint Nk (Nk is same as above) at time i and is 
generated by rf. p~0 s~ is the offset of Ns in the coordinate of its parent joint 
at initial time. 
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6.2.2.2 Motion Feature Representation 
! 

Generally speaking, motion features are extracted from information related 
to joints, including coordinate position, angular velocity, relative angle of 
joints as well as the orientation of son joints articulated to a certain joint. 

According to this human skeleton, each frame of motion sequence is re- 
presented as a vector with 51 dimensions. Key-frame extraction directly 
from the original data space will give rise to low efficiency. Moreover, the 
intrinsic part of motion sequence is hidden by the high-dimensionality and 
will cause inconvenience in the follow-up motion analysis. Consequently, 
we need a key-frame extraction method that can keep the intrinsic feature 
of motion data. 

Based on the human skeleton, we upgrade our motion describing meth- 
od from joint-layer to skeleton layer. Considering that limbs move more 
frequently than other parts of human body, eight bones in limbs are ex- 
tracted to represent motion feature. Therefore, nine bones are extracted as 
the objects to represent motion feature, including eight bones in human 
limbs and a central bone that is connected by root and chest joints as a ref- 
erence bone (see Fig. 6.12 (b)) .  Each bone is defined as a vector from the 
upper joint to the lower joint in human skeleton. Given a bone B ( k ~ ( l ~ k ~  

9) connected by point Ni and Nj ,  it is defined as: B (k~= NiN~ = p~J~ _p ( i~  
where Ni is the parent of Nj in human skeleton, and p(i~ and p(J~ are coor- 
dinates of Ni and Nj in the world coordinate system respectively. 

For every limb bone, bone angle is defined as the angle between the 
limb bone and the central bone. Given a limb bone, its bone angle at the 
ith frame is defined as follows: 

o(k )  --1 B~k) " R(center) 
i =cos  - (k = 1 , ' ' ' , 8 )  (6-4) 

where B~ center) represents the central bone at the ith frame and 0 is in the in- 
terval [0,  ~]. 

Consequently, by calculating 8 bone angles, the ith frame of human 
motion is represented by a eight-dimensional angle vector: Fi = (o(~) "'" , - , i  9 9 

~8) ). This motion feature representation not only reduces the dimensionality of 
original motion data, but also efficiently represents the physical feature of hu- 
man motion. 

6.2.2.3 Key-frame Extraction 

With all the work above, now we can represent human motion data by 8 
bone angle vectors. Consequently, every frame of motion data corresponds 
to a point in the 8D bone angle space, and motion trajectory can be viewed 
as a curve in the 8D bone angle space which is formed by connecting these 
points in the sequence of time. In this way, to get key-frame collection 
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from a certain motion sequence is to simply find a set of points on the 
curve. Polygonal curve formed by these chosen points can then be used to 
approximate the original motion curve. Then curve simplification is em- 

. .  

ployed to get the key-frame set. However,  if we take curve simplification 
directly, although efficiency will be improved in that the feature represen- 
ting method proposed in this book has advantages in its low dimensionali- 
ty, some "extreme" postures will be missed to some extent. So we make 
possible extreme positions as key-frame candidates, and finally get key- 
frame collection that not only abstract motion data but also retain motion 
features. 

Candidate Key-frame Searching 

It is found that extreme values exist in the trajectories of bone angles. Fig. 
6.13 illustrates the trajectories of bone angles of right leg that is composed 
of right upper leg and right lower leg in a walk motion with 20 frames. 
There are 3 local extreme points at the 8th, 12th and 17th frames respec- 
tively, which correspond to the extreme postures that occur in this motion 
sequence. At the 8th frame, the right leg reaches the highest position, at 
the 12th frame it reaches the ground for the first time and at the 17th 
frame the gravity center o{ human is upon right leg. We can see that the 
changes of bone angles of right leg describe the movement of right leg in 
motion sequence well. The postures at those extreme points can be select- 
ed as candidate key-frames because they are the most informative repre- 
sentatives of right leg 's  movement. 

Similarly, changes of other limbs ~ bone angles can well describe the 
movement of corresponding limbs. According to all bone angles ~ changes, 
candidate key-frames can be ob ta ined through  collecting those frames at 
which local extreme points occur. Since those candidate key-frames are the 
union o{ extreme postures in the movements o{ all human limbs, they com- 
prise most of all possible extreme postures in motion sequence. 

Fig. 6.13 Determination of candidate key-frame 
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Key-frame Refinement Based on Layered Curve Simplification 

In the process of human ' s  movement, there are two phenomena. 

�9 The extreme points of different bone angles may not occur at the same 

time, but in a certain time interval; 

�9 There is some noise when human motions are being captured, which 

leads to some posturers distortions. 

These phenomena result in that there are some candidates near to each 
other. For lower error requirement or higher compression ratio, those can- 

didates should be merged. On the other hand, due to the existence of some 
motion clip with less bone angles ~ change, there are some adjacent candi- 
dates that are distant in the time sequence. For higher error requirement or 
stronger ability to summarize human motion, one or more frames between 
those candidates should be selected as key-frames. Consequently, candi- 
date key-frames should be refined according to different error requirements 
before gaining the final key-frame collection. 

Before elaborating on our refinement algorithm, l e t ' s  take a look at 
Simple Curve Simplification (SCS) algorithm E18,22~. The main idea of the 
algorithm is to choose a subset from original data set which lies in a high- 

dimensional space formed by connecting all the data points. Then the po- 

lygonal curve is approximated using this subset. We judge whether the ap- 
proximating is finished by calculating maximum value of straight-line dis- 
tances from all data points on the curve to the line segment connecting two 
ends of the curve. Then we judge whether the ratio of this maximum value 
and length of the line segment meet the error requirement. Fig. 6.14 gives 
a demonstration of the algorithm. The algorithm can be generalized to 
higher dimensionality for the ratio of maximum distance to length of line 
segment is taken as approximation judging condition. 

Inspired by the SCS algorithm, we propose a Layered Curve Simplifica- 
tion (LCS) method to refine our candidate key-frames. The LCS algorithm 
is described as follows. 

(1) **. Given a sequence data set M. M - -  {F~ [ i - -  1, . . . ,  N} ,  F~ = (x~ , , 
(m) x~ ) ,  sequentially connect data points in M to get a curve in m-dimension- 

al space; Given a set C.. C C M ,  F1 ,FN~C, try to find a sequence data set 
K which approximates the curve of M under certain error requirement, 
where K C M  and the elements in K should be in C as many as possible. To 
solve this problem, M and C can be treated as curves in m-dimensional 
space and they can be combined and constructed into a two-layer structure. 
The higher layer C is, the lower layer M will be. In the beginning, we run 
SCS on the upper layer to find K. If the resulting approximation cannot 
satisfy the error requirement, then SCS runs on the lower layer. Those 
newly gained points at which curve is sub-divided would be inserted into 
the upper layer. Then,  SCS runs to the upper layer again. This procedure 
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Fig. 6.14 Simple curve simplification (SCS) algorithm 

is recursively repeated until the resulting approximation satisfies the error 
requirement specified for the given distance criterion. By running the SCS 
method to each layer alternately, the data set K would be gained finally. 
Two arrays (c_ hum and pair) are used in this algorithm.. " c - n u m "  sorted 
by value ascendingly records the position in M of every element in C, while 
"pair" marks whether the elements in M belong to set K. If a certain ele- 
ment in M does not belong to K ,  set its corresponding element in "pair" 
to value 0, otherwise, its corresponding element in "pair" contains a point 
pointing to the position in M of the next element in K. In SCS, the shor- 
test straight-line distance from the ith element to the line connected by nl 
and nz can be got from the formula below: 

[ (k) x ( k )  ) ~" (k) X ( k )  \ X i  ) 1/2 k X n  2 ~ n, ~ n, 
k=l  

-~j," (k) x(k)  ) 2 
k Xn~ ~ n, 

k=l 

(6-5)  

6.2.2.4 Layered Curve Simplification Algorithm 
(1) . . .  (m) Input: Sequence data s e t M :  M - - { F ; I i = I , . . . , N } ,  F ; = ( x ;  , ,xi  ); 

set C: CCN and Fx ,FN~C; error parameter 8E R + 
Output: Array kfSet: kfSet-- { i[ F; E M ~ F ;  E K ,  i =  1 , . . . ,  N}  
Step 1 Initialization. N is the number of elements in set C; c - h u m =  {i[ 

F;EM & FiEC,  I ~ i ~ N } .  pa i r (1 )=N,  p a i r ( N ) = 1 ,  track- 
Mark= 1, this variable is to mark the position of current element 
in processing in set C. lastMark = 0, this variable is to mark the 
position of the element in set C that has been processed most recently. 
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Step 2 If pa i r ( t rackMark ) - - - - -1 ,  go to Step 5, otherwise calculate the sub- 
set of set C which contains all elements between t r a c k M a r k  and 
p a i r  ( t rac leMark  ) �9 subset = { c_ h u m  ( i ) I t r a c k M a r k  ~ c-  n u m  ( i )  

p a i r ( t r a c k M a r k ) ,  l ~ i ~ N } ,  if size of s u b s e t ~ O ,  go to Step 3, 
otherwise go to Step 4. 

Step 3 SCS on the upper layer 
(1) Calcul ate the distances from every point in subset to line 

[ Ft~i~(w.ckM~k~ Ft~kM~k [ according to equation(4-1), m a x _  d is t  stores 
the maximum distance, and its corresponding element is m a x _  

ind.  

(2) Calculate rat io  = m a x _  dis t /1[  Ft~ir(t~ackMark ) F~ackM~rk [[ �9 If rat io ~ 8, 

let p a i r  ( m a x -  ind  ) = p a i r  ( t r a c k M a r k  ) ,  p a i r  ( t r a c k M a r k  ) = 

m a x -  ind.  Otherwise, t r a c k M a r k  -- p a i r (  t r a c k M a r k  ). 

(3) Go to Step 2. 
Step 4 SCS on the lower layer 

(1) Let subse t=  [ t r a c k M a r k  �9 p a i r ( t r a c k M a r k )  ]. 

(2) Calculate the distances from every point in subset to line [ 
Ft~ir(~ckMork)[ according to equation (4-1).  m a x _  d is t  stores the 
maximum distance, and its corresponding element is max-ind.  

(3) Calculate rat io  = m a x _  d i s t /  [[ Ft~ir(t~ckMa~k ) F~ckM~rk ][ �9 If rat io > 8 ,  

C = C ~ { F m ~ _ m a } ,  reset c _ n u m  and n, let p a i r ( m a x - i n d ) = p a i r  

( t r a c k M a r k  ) , p a i r (  t r a c k M a r k  ) = m a x _  ind  , go to Step 2. Other- 
wise, t r a c k M a r k  = p a i r (  t r a c k M a r k  ). 

(4) Go to Step 2. 
Step $ k f S e t - - { i [ p a i r ( i ) = / = O ,  l ~ i ~ N }  

To use the layered curve simplification algorithm to refine candidate 
key-frames, let the motion data represented by 8D bone angle vectors be 
set M and let candidate key-frame collection be set C, and the resulting set 
K is the final key-frame collection that satisfies users ~ error requirement. 
In this method, curve simplification in the higher layer is equal to merging 
adjacent candidate key-frames, and operation in the lower layer is equal to 
selecting new key-frame. Since key-frames are mostly extracted from the 
candidate key-frame collection that is the higher layer in the two-layer 
structure, it is confirmed that the resulting key-frames contain those ex- 
treme posture as many as possible. Thus we can get good abstract of the 
original motion data while maintaining motion characteristics, and compar- 
ison between similar motions also becomes possible. 

6.2.2 .5  Adaptive Extraction Parameters 

Using the layered curve simplification based key-frame extraction pro- 
posed in the above section, key-frame collections of motion sequences sat- 
isfying different error requirements can be obtained through specifying dif- 
ferent parameters of error requirement. But in most applications users only 
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have idea about the number of key-frames and do not care about the value 
of extraction parameter which results in the actual number of key-frames. Here 
we employ adaptive extraction parameters to solve this problem (see Fig. 6.15). 

The main idea of adaptive extraction parameters is to adjust the parame- 
ters of error requirement 8 automatically according to the difference be- 
tween theactual  value and the desired value of the number of key-frames. 
If the actual value is more than the desired value, 8 increases and the in- 
crease rate is 8- inc (8_ inc E ( 0 , 1 ) ) .  Otherwise, 8 decreases and the de- 
crease rate is 8-dec (8 -decE  (0 ,1 ) ) .  There are several factors that affect 
the convergence of the number of key-frames as follows. 

�9 Greater initial value of 8 and smaller change rate of ~ lead to slow con- 

vergence of the desired key-frame number; 

�9 Greater change rate of 8 lead to the oscillation of actual value around 

the desired value of the number of key-frames severely; 

�9 The actual value is oscillating around the desired value of the number 

of key-frames in a small neighborhood, but the actual value cannot 
converge completely. 

To solve the first two problems above, we adjust the change rate of 8, 
d8 (dSE {8_inc,~_des}, dSE ( 0 , 1 ) )  automatically. If d8 is in the same 
direction in two consecutive loops, d8 increases to speed the change of dS. 

Candidate key-frame collection & target value / 
of key-frame number 

Parameter initialization 

Layered curve simplification 
based key- frame extraction 

Parameter adjustment 

I 

( ) 
Fig. 6.15 Flowchart of self-adaptive parameter extraction 
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And when the actual value is oscillating around the desired value, d8 de- 
creases to relieve the oscillation. The new d8 can be calculated as follows: 

finc(d~)-- ~ /1 - - (dS- -1 )  z , fdoc(dS) = 1 - -  ~ / 1 - - d g  

In addition, a maximum oscillation number will be defined as a condi- 
tion to jump out from the loop in order to solve the above third problem. 

6 . 2 . 3  Results and Discussions 

We captured more than 100 real human motion sequences with different 
motion types at 60 Hz frame rate as the testing collection to show the ef- 
fectiveness of LCS. And it is implemented by Matlab and run on an Intel 
PentiumIV 2.6 GHz CPU with 512 MB memory. 

6.2.3.1 Key-frame Extraction 

First ly,  key-frames are extracted from all kinds of motion sequences. As 
shown in Fig. 6. 16, extreme postures can be extracted from motion se- 
quences with different motion types precisely. For example, in Fig. 6.16 
(a) six key-flames are extracted from a kicking motion with 90 frames. 
The 1st key-flame is a ready pose, at the 40th frame the knee joint lifts to 
the highest point and the foot joint reaches to the furthest point at the 49th 
frame, and in the 90th frame subject moves back to the ready pose again. 
The 31st and 69th frames are the important transitional postures among 
these extreme postures. 

Fig. 6.17 shows key-frame collections with different numbers of key- 
frames for step-up motion. If the desired key-frame number is large, we 
get a key-frame collection with some redundant frames (bot tom row).  
When we set the desired key-flame number smaller and smaller, this 
method can get all of the extreme and important transitional postures pre- 
cisely and the redundant frames are pruned (second row). But if we set the 

Fig. 6.16 Key-frame sequences extracted from four dissimilar human motions. (a) 
Kick; (b) Wave and walk; (c) Punch; (d) Run 
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Fig. 6.17 Key-frame collections for step-up motion with different numbers of key- 
frames 

key-frame number smaller fur ther ,  some important  key-frames will be 

missed (in top row, the 71st frame is missed).  

6 2 3 2 Comparison with Other Key-frame Extraction Methods 

In Fig, 6 .18 ,  one non-periodical motion,  jump-up,  is demonstrated to 
make a comparison among these three key-frame extraction methods. The 
jump-up motion sequence consists of 91 frames and we preset the desired 
number of key-frames to 12. Before the 30th frame, the subject moves lit- 
tle. He begins to jump at the 48th frame and then he jumps onto a higher 
ground. The results of three methods are shown in Fig. 6. 18. It can be 
seen that under the  same compression ratio, LCS achieves the best resul t ,  

Fig. 6.18 Key-frame sequences extracted from a non-periodical motion, jump-up, by 
using three different key-frame extraction methods under the same com- 
pression ratio. (a) Layered curve simplification based method; (b) Simple 
curve simplification based method; (c) Uniform sampling method 
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and the result of SCS is better than that of Uniform Sampling (US).  US 
method loses many details of human motion and cannot describe the origi- 
nal motion effectively due to over-sampling under less posture changes and 
under-sampling under intense posture changes. SCS describes the original 
motion better than US, but its key-frame collection misses some extreme 
postures such as the 67th frame when the subject touches the ground for 
the first time compared to the key-frame collection extracted by LCS. 

6.2.3.3 Key-frame Extraction from Similar Motions 

In Fig. 6.19 four similar motions are shown to demonstrate the consistency 
among similar motions. Each of them contains a complete cycle of walking 
movement which starts and ends at the same phase, but they have differ- 
ent motion styles and velocities. The lengths of these four motions are 38, 
40, 239 and 68 respectively and the desired number of key-frames is set to 7 
for all of them. In Fig. 6.19 (a ) ,  the subject is swinging his arm exces- 
sively as he walks, while the subject's arms move little in Fig. 6.19 (b). 
In Fig. 6.19 (c),  the subject's body is leaning backwards as he walks, and 
in Fig. 6.16 (d) ,  the subject is shambling. In all of key-frame collections 
the Center of Gravity (.COG) is on the left foot at the 1st key-frame, the 
right foot touches the floor for the first time at the 3rd key-frame, the 
COG transfers to left foot at the 4th key-frame, at the 6th key-frame, the 
right foot touches the floor again and the COG transfers back to'right foot 
again at the last key-frame. The 2nd and 5th key-frames contain the im- 
portant transitional postures among these extreme postures. It can be seen 
that these four key-frame sequences correspond to each other basically, so 
it is possible for further processing such as motion retrieval, matching and 
motion editing. In conclusion, experimental results show that when LCS 
based key-frame extraction method is applied on similar motion sequences 

Fig. 6.19 Key-frame sequences extracted from four similar human motions 
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with different lengths, consistency can be retained among the key-frame 
collections. 

6.2.3.4 Adaptive Extraction Parameters 

Table 6.2 shows the initial parameters and results o{ extraction in the ex- 
periments. M1, M2 and M3 correspond to the (d ) ,  ( b ) ,  (c) motions in 
Fig. 6.16, and the maximum of the oscillation number is 100. The changes 
of ~, ~_ inc and 8-dec  in Experiment 1 and Experiment 5 are shown in 
Figs. 6.20 (a) and (c) ,  respectively. Fig. 6.20 (b) is the zoom in of a part 
of Fig. 6.20(a) where epoch (loop number) is from 6 to 28. In Fig. 20(a) ,  
initial 8 is greater (100) and initial 8_ inc and 3_ dec are smaller (0 .01) .  
The algorithm increases 8-dec to speed 8 's  decrease at the 6th loop, where 

decreases too much and needs increasing. After that, the algorithm 
makes 8_inc increase to speed 8 's  increase. At the 14th loop, 8 begins to 
decrease. Such process causes 3 to oscillate around its target value. Since 
every parameter is adjusted automatically, the amplitude of 8 ' s  oscillation 
will become smaller and smaller and at the 28th loop, 8 is equal to its tar- 
get value and algorithm terminates. While in Experiment 5 (Fig. 6. 20 
( c ) ) ,  the value of key-frame number cannot be convergent completely, 
which causes 8 always to oscillate around its target value. So we terminate 
the algorithm by setting the maximum oscillation number, and the value 
that is most close to target value is our final result. 

Table 6.2 shows that the convergence of the number of key-frames is 
independent o{ initial parameters. Even for those that have too many 
frames and reach the maximum of oscillation number (Experiment 5),  our 
algorithm's running time is acceptable. Consequently, initial values of the 
algorithm's parameters can be defined at random in their range of value. It 
is noticed that 8 is often in the interval (0,1) when the algorithm terminates, so 
the initial value of 8 is usually defined randomly in the interval (0,1).  Defining 
initial parameters at random automatically relieves user's work. 

ID 

Table 6 .2  Initial parameters and results of extraction 

Key-frames 
Motion 

(desired/ 
(frames) 

actual) 

M1(33) 5/5 

M1(33) 5/5 
, ,  , 

M2(80) 7/7 

M3(209) 8/8 

8 8- inc 8-  dec 

(initial/ (initial/ (initial/ ~ Loops Time 
actual) actual) actual) 

100/ 0.01/ 
0 . 0 1 / 1 -  28 0.1720 

0.4970 0.1411 
o.ol/ 0.90/ 

0.90/1 * 11 0.0620 
0.4852 0.5641 

1.0/ 0 .0 i /  
0.90/0.9 4 0.0150 

0.4149 0.8729 
1.0/ 0.01/ 0.90/ 

16 0.3590 
0.2738 0.9919 0.5641 

0.5/  0.01/ 0.90/ 
197 3.5470 

0.1650 0.1411 0.1743 
M3(209) 20/19 

* Actual value of 8-inc approaches 1 but is not equal to 1. 

Oscill- 
ation 

8 

2 

0 

6 

100 



6 Intelligent Techniques for Processing and Management of Motion Data 211 

I 30 # key frames[ 

2 4 6 810121416182022242628 
epoch 

3 5  ' 
3 0 [ ~  r - - "N. -*- # key frames] 

15 . 
1 

| i | 

v6 8 10 12 14 16 18 20 22 24 26 28 
epoch 

100J~, --t- ~5 , _ ~ , ~ [ ~  

40 
, , _ _ _ _ _ ~ . . ~ ' _ ~ ' ~ ' ~ ' - _  , - , - y  -.,~,-,~,-.,-,, - . , ~ , ~  

2 4 6 810121416i8 2022242628 6 8 10 12 14 16 18 20 2224 26 28 
epoch 

1.2 
. . . . . . . .  - - - !  

d "e-e-e-e.e.e 4 .  0.8 . 
06I  : / ' 3 d e c  ] 

�9 ' -"  - -  I D . e . Q  

0.4 t ~ / "e-S_ inc " I 
�9 [~  

2 4 6 810121416182022242628 
epoch 

(a) 

200, 
150~[ 4- 
100 # key frames 

1 2 9  57  85 1,13 141 169 1 9 7  
epocn 

epoch 

1.2 . . . . .  
1 0 ~ - t ~ - . - . . =  =.;_:. = = : _- : �9 : 

�9 " ~ - 4 - ~ . ~ . 4 ~ e . ~ -  0.8~ / "  ~ 
0.61- , [  -..-6 dec k.~..... 
0 4 t  f -"~-inc \ 

�9 ~ L J ,  . . . . . . . . . .  7 . . . . . . .  *" 
u6 8 1012141618 20 22 24 ~6 ~8 

epoch 
(b) 

0.6 0.5  i 
04 

0~"' 2; ' 5'7' 8 '5 '113 '  141' 1;9 '197 
epoch 

1.2- 
1.0 .o.. S_.dec 
0.8 :..,. : ~ ..'.. -*-t~ inc 
06 , i !  , 
0"2 ! : ' !ii~. : i :i ~, 

"01 2 9  57  85 113 141 169 197  
epoch 

(e) 

F i g .  6 .  2 0  Algorithm parameters graph. For (a) and (c) ,  upper-graph illustrates 
changes of the number of key-frames, middle-graph illustrates changes of 
8 and lower-graph illustrates changes of 8- inc (solid line) and 8-dec 
(dotted line) ~ (b) is a zoom in of circled part in (a) where the epoch is o- 
ver an interval E6, z03 

6 2 3 5 Motion Compression and Reconstruction 

Fig. 6 . 2 1  compares  the original  mot ion  data wi th  the recons t ruc ted  data 

which are genera ted  f rom key-f rames  ex t rac ted  by our  method.  Before the 
40th  f rame,  punch mot ion  is intense so more  key-f rames  are ex t rac ted ,  
which is very impor t an t  to preserve  the details of the original mot ion  in re- 
const ruct ion.  Af ter  the 40th  f rame,  punch  mot ion  becomes gent le  so 
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Fig. 6.21 Motion reconstruction. The dot lines represent the original x,  y, and z ro- 
tation values of right shoulder joint in a punch motion. The block is the 
key-frame and solid line is the reconstructed motion data. Here we use the 
piecewise cubic Hermite interpolation polynomial algorithm for reconstruc- 
tion E2a? 

sparse  k e y - f r a m e s  are ex t rac ted .  Fig.  6. 22 s h o w s  the  r e c o n s t r u c t e d  se- 

quence  of th is  p u n c h  mot ion .  

A d d i t i o n a l l y ,  we have  e x p e r i m e n t e d  on long m o t i o n  sequences  in o rde r  

to get  some  re la t ion  b e t w e e n  c o m p r e s s i o n  ra t io  and  r e c o n s t r u c t i o n .  In Fig.  

6 . 2 3 ,  we can see t ha t  m o r e  e x t r a c t e d  k e y - f r a m e s  ( l o w e r  c o m p r e s s i o n  ra t i -  

o) r e su l t  in lower  r e c o n s t r u c t i o n  error .  F r o m  all of the  e x p e r i m e n t a l  re-  

su l t s  on the  t e s t i ng  col lec t ion  ( m o r e  t h a n  100 m o t i o n  s e q u e n c e s ) ,  com-  

p re s s ion  ra t io  w i t h  va lue  of 10 is the  bes t  t r adeo f f  for qua l i ty  of m o t i o n  re- 

cons t ruc t i on .  

Fig. 6.22 Reconstructed sequence of punch motion. Numbers with circle represent 
the key-frames. Others represent the postures which are reconstructed 
from key-frames 
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Fig. 6.23 Reconstructed error at different compression ratios 

In this section, we have presented a method for efficient key-frame ex- 
traction for human motion capture data. One main contribution of this 
work is the introduction of bone angles as human motion feature represen- 
tation, by which human motion~s extreme postures are searched for re- 
gardless of the motion type and style. The second contribution is the pro- 
posal of layered curve simplification method to refine candidate key-frame 
collection that is composed of extreme postures. Since the final key-frame 
collections are selected based on extreme postures, they have correspond- 
ing key-frames for those similar motions, which benefits comparison a- 
mong the similar motions and can be used for key-frame based motion re- 
trieval application directly. Thirdly, adaptive extraction parameters meth- 
od is proposed. By this method, given a specified compression ratio, key- 
frames can be extracted without specifying any extraction parameter. 

This key-frame extraction method can be used in multiple applications 
including: (1) motion summarization for browsing; (2) key-frame based 
motion retrieval; ( 3 )  motion compression and reconstruction; (4 )  key- 
frame based motion synthesis. 

Experimental results show that key-frame collections attained from lay- 
ered curve simplification algorithm can avoid the problems of over-sam- 
piing and under-sampling which often occur in uniform sampling method. 
Moreover, since layered curve simplification method is applied to refine ex- 
treme posture key-frames, limitations in simple curve simplification algo- 
rithm in key-frame extraction could be avoided, which means some impor- 
tant extreme postures will not be missed and consistency will be remained 
among key-frame collections of similar motion sequences. Furthermore,  
with adaptive extraction parameters, users only need to pay attention to 
key-frame extraction results without worrying about the parameter values. 
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6.3  Motion Data Retrieval 

With the development of motion capture techniques, more and more 3D 
motion libraries become available. When these 3D motion libraries are put 
into use, a content-based 3D motion retrieval technique is an urgent need. 
The reasons are mainly related to the following two aspects. 

�9 It is an important tasks to retrieve required motions from existing 3D 

motion libraries for the purpose of developing more efficient anima- 
tion tools. Recently, in the field o{ motion capture based animation, 
researchers have focused on the development of semantic processing 
tools for motion data in abstract layer. For example, in SIGGRAPH 
2002, Pullen and Bregler Ez4? presented a motion capture assisted ani- 
mation, which automatically retrieves appropriate motion fragments 
from an existing motion library according to a given key-frame mo- 
tion; in SIGGRAPH 2003, Dontcheva proposed a motion directed 
based animation algorithm to retrieve similar motion clips from mo- 
tion libraries according to animator 's  motion sample. 

�9 Content-based 3D motion retrieval technique also facilitates animators 

to efficiently manage motion libraries. Traditionai text-base retrieval 
techniques can hardly be employed for motion retrieval because it is 
time-consuming and inaccurate for users to annotate manually. 

Content-based retrieval technique has been hot in multimedia and signal 
processing field and is widely used in multimedia technology such as im- 
age, audio and video. In this technique, visual and audio characters (such 
as color, texture, motion characters) are extracted to describe the content 
of video (audio).  Then retrieval can be realized between similar video 
streams or audio streams according to the sample submitted by users. 

Content-based retrieval techniques have many advantages over tradi- 
tional retrieval techniques; however, there is still no efficient content- 
based retrieval technique for 3D motion at present. 

The following challenges have to be addressed for 3D motion retrieval 
techniques. (1) Effective reduction is required for high-dimensional motion 
data~ (2) Motion signal is the combination of signals from every joint, 
which demands appropriate motion feature descriptors; (3) It is time-con- 
suming to calculate the similarity or distance between two motions. 

Aiming at the above challenges, a content-based 3D motion retrieval algo- 
rithm, 3D motion retrieval with motion index tree, is presented as below. 

In 3D motion retrieval with motion index tree, a hierarchical motion de- 
scription is adopted to represent a posture, based on which motion library 
can be partitioned hierarchically and construct a motion index tree to facili- 
tate motion retrieval. Nearest Neighbor (NN) rule-based dynamic cluste- 



6 Intelligent Techniques for Processing and Management of Motion Data 215 

ring algorithm is employed to partition the motion library and construct 
the motion index tree. The similarity between two motions is calculated by 
elastic match. To improve the efficiency during the similarity calculation, 
we adopt an adaptive clustering-based key-frame extraction algorithm to 
extract posture key-frame sequences, which are used in elastic match. 
During the retrieving stage, the motion index tree serves as a hierarchical 
classifier to determine the sublibrary that contains the promising similar 
motions to the query sample. Next, key-frame posture sequences are ex- 
tracted from the sample and the motion from the sub-library respectively, 
and the similarity between them is calculated using elastic match. 

6 . 3 . 1  Motion Index Tree 

Within the hierarchical motion description, the motion of a parent joint 
may induce child joints, whereas the motion of a child joint is unable to in- 
fluence its parent joint. Obviously, the joints at high levels of the hierar- 
chy are more significant than those at lower levels in terms of determining 
a motion. This hierarchy among the parameters of a posture can be used to 
facilitate motion retrieval by building a corresponding motion index tree for 
a motion library. Given the above human body as an example, all the 
joints can be divided into the following five levels according to their posi- 
tions in the tree illustrated in Fig. 6. 24, as {Root}, { L_Hip, R_Hip, 
Chest}, {L_Knee, R_Knee, Neck, L_Shoulder, R_Shoulder}, {L_Ankle, 
R_Ankle, Head, L_Elbow, R_Elbow}, and {L_Wrist, R_Wrist} from 
top to bottom. We construct a motion index tree based on this hierarchy to 
partition and structure the 3D motion library, as shown in Fig. 6.24. 

The main steps to construct the motion index tree are outlined as follows. 
Step 1 Partition the 3D motion library ML into several subsets MLz,k,  u- 

sing dynamic clustering according to the motion of the first-level 
joint (viz. {Root}), and build a sample motion set from the sub- 
sets for the node Root. Particularly, motions closest to the can- 
croids of each subset are selected as samples from this subset. 

Level 1 ~ {Root} 

Level 2 ~ . . . . . . . .  ~ ~ { L_Hip,R_Hip,Chest} 

Level3 ~ ~ ~ {L_Knee,R_Knee,Neck, 
...... " ..... �9 ..... L_Shoulder, R_Shoulder} 

Level4 ~ ~ ~ ... ~ ~ ~ ~ ~ {L_Ankle,R_Ankle,Head, 
. . . . . .  L_Elbow, R_Elbow} 

Level 5 { L_Wrist,R_Wrist } 

Leaf 0 " "  ~ "'" ~ "'" 0 "'" ~ "'" ~ "'" ~ ""~"" ~ 

Fig. 6.24 Motion index tree 
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Create a null node with an empty sample set, associate it with a 

subset ML2,k, and take it as one of the child nodes of Root. 

Step 2 Partition each subset ML~,k respectively according to the motion of 

joints at the level i in the hierarchy and build a sample set for its 
corresponding node in the motion index tree in the similar way in 
Step 1. Again, create a null node for a newly created subset 

MLi+I, j and take it as a child node of MLi,k. 
Step 3 Repeat Step 2 until all joints at the lowest level of the hierarchy 

are processed. 
Step 4 Take the last partitioned subsets as leaf nodes of the motion index 

tree. 

6.3.1.1 Nearest Neighbor Rule-based Dynamic Clustering 

Partitioning a motion library into subsets is a well-defined clustering prob- 

lem. As mentioned above, motion is a high-dimensional signal and no 
function is available to describe the probability density up to now. Due to 
the lack of available probability density functions, we partition the motion 
library based on the similarity between sample motions. Therefore,  nea- 
rest neighbor rule-based dynamic clustering E257 is adopted to partition and 

structure the library. 
Given two motion samples yi and y j ,  if yj is the I th  Nearest Neighbor 

(NN)  of yi ,  the "NN coefficient" of y, to Yi  is defined as I. Likewise, if yi 
is the Kth  nearest Neighbor of y , ,  the NN coefficient of y~ to y, is defined 

as K. Let a0 be the "NN value" between yi and y , ,  ao = ( I + K - - 2 ) .  If Mi 
and M s are classified into the same cluster, the connection cost is defined 

as a0 ; otherwise,  the cost is 0. To eliminate clusters with only one sam- 
ple, the connection cost of the self-connection is defined as 2N ( N  is the 
number of motions in the library). The objective function JNN is defined as 
the sum of the total inner-cost LIA and total inter-cost LIR- 

J NN = L IA --t-- L IR 

The total inner-cost LIA can be defined as the sum of all the connection 

values between every pair of samples in the whole library, given that the 

connection cost between samples from different clusters is 0. 

N N 

LIA = 2 2 t~ij ( 6 - 6 )  
i = 1  j=l 

To calculate the inter-cost, the minimal NN value between cluster eo~ 

and aJj, Y0, is computed first. And y~, the minimal NN value between 
cluster a~ and all the other clusters can be calculated as follows= 

7i = min 70 (6-7) 
j=/=i 

Let aimax and akmax be the maximal connection cost between samples in the 
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cluster wi and wk respectively, c be the number of clusters, the inter-cost of 
cluster xi to the other clusters is defined as follows: 

[--E('Y~--G,max)-I-(?'i--Gkmax)] (7'~>G~m~x, ~'~>Gkm~x) 
= ~ i  +l~imax (~/i~0~imax , ~/i>0~kmax) ( 6 - 8 )  

~i / ~ i  +t~kmax " (~i>l~imax , ~/i~l~kmax) 

[ ~/i + Gkmax + Gimax ( ~i ~l~imax , ~/i ~l~kmax ) 

The total inter-cost can be defined as the sum of all the inter-costs. 

LIR = 2 fli (6-9) 
i=1 

The optimal clustering should result in the minimal objective value JNN. 
The following iterative method is proposed to solve this problem. 

Step 1 Calculate the distance matrix A, with each element A o = A ( y i , y j ) ,  

where A o is the distance between motion y~ and yj. 
Step 2 Construct NN coefficient matrix M based on A, with each element 

M 0 being the NN coefficient of yj to y~. 
Step 3 Build NN value matrix L based on the NN coefficient matrix M. 
Step 4 Connect each element to the element, to which it has the minimal 

NN value in L,  and form the initial clusters. 

M o + M j i - - 2  (j=/=i) 
Lo = 2 N  ( j  = i) 

Step 5 Calculate )'~ of each cluster and compare it with l~imax and ak .. . .  If ~'~ 
is smaller than either of a~max and akmax, merge cluster cog and cok. 

Step 6 Repeat Step 5 until no clusters can be merged. 

6 . 3 . 1 . 2  Key-frame Extraction 

Because each motion is represented as a frame sequence, the similarity be- 
tween two motions is defined as that between the two corresponding frame 
sequences. However ,  even a short motion of 4 seconds is composed of ap- 
proximately 100 frames. It is time-consuming to calculate the similarity 
with these original data. To improve the computational efficiency, we ex- 
tract key-frame sequences from two motions and calculate the similarity 
between the key-frames only. Taking the motion of the second level joints 
as an example, we show the key-frame extraction algorithm in detail below. 

Given a motion M with N frames, the motion at the second level can be 

represented as a (3 X 3 X N) X 1 vector Mz �9 

M~ =[F, ,F~ , . . .  ,F~] 

F i  ~ [ t'lxi , rl~ , t'lzi , t'rxi , t'ryi , t'rzi , rc~ , rc:s , rca ] 

where Fi is the ith frame at the second level, r~ , r l . ,  and rl~ are the rota- 
tion parameters of joint Left Hip; r~  , r ~ ,  and r~ are the rotation parame- 
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ters o{ joint Right Hip; rc=,rc~, and r~ are the rotation parameters o{ 
joint chest. 

At present, many methods have been proposed {or key-frame extraction 
in the field of video abstraction. However,  due to the periodicity of mo- 
tions, most of these algorithms, including sampling-based, shot-based, 
and sequential comparison-based methods, will cause redundancy, i. e . ,  
similar frames in different cycles are extracted as key-frames. Methods in 
which other information, such as audio stream and objects in each frame 
are utilized {or key-frame detection, are obviously not suitable for key- 
frame extraction from motions, as the only information available is the 
posture sequence in each motion. 

A promising way is clustering-based extraction E26-287. Particularly, sim- 
ilar frames are clustered into the same cluster, and a representative frame 
from each cluster is selected as a key-frame. We adopt the adaptive cluste- 
ring-based key-frame extraction technique, in which similar frames in dif- 
ferent cycles can be clustered into the same cluster. Define the similarity 
between two frames as function Sire about the weighted distance between 
them: 

1 Sire(F1 , F 2 ) =  fa wk(Flk- -F2k)  2 (6-10) 

where Flk and F2k are the motion parameters of frame FI and F2 respective- 
ly, wk is the weight which indicating the significance of joint k. If these 
joints are from different levels in the hierarchy illustrated in Fig. 6 .24,  we 
give higher weights to joints at higher levels whereas lower weights to 
those at lower levels empirically. Let I[~i be the ith cluster, the clustering 
algorithm can be summarized as follows. 
Step 1 Initialization: F1 --~1~1 , F~--~F~I , ( t h e  centroid of ~ ) ,  1---~num- 

Cluster. 
Step 2 Get the next frame F~. If the frame pool is empty, end. 
Step 3 Calculate the similarity between Fi and the centroid of an existing 

cluster ~k ( k =  1 ,2 ,  .." ,numClus ter )  according to equation (6-10). 
As Sim ( F~ , F~k ). 

Step 4 Determine the cluster closest to F~ through calculating M a x S i m  as 
follows: 

rmmCluster 

M a x S i m  = max Sire ( Fi , F~k ) 
k=l  

Step 5 

Step 6 

If M a x S i m  is below a given threshold, it means Fi is not close e- 
nough to be put into any cluster, goto Step 5; otherwise put Fi in- 
to the cluster with M a x S i m ,  and goto Step 6. 
numCluster  = numCluster-+-1. A new cluster is created. Fi--~ 

~ numCluster �9 

Update the cluster centroid as follows. 
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DF'ck + Fi 
Fck = D + I  

where F'ck and Fck are the centroids before and after update, re- 
spectively, and D is the size of the old cluster. Go to Step 2. 

According to Zhuang, et al. Ez93, the frame that is closest to the centroid 
of a cluster is selected as a key-frame. However, as the order among 
frames is lost during clustering, the extracted key-frame sequence is not 
consistent with the original temporal sequence. To preserve this essential 
attribute, considering frames in the same cluster are extracted sequential- 
ly, the first frame in each cluster is selected as the key-frame. 

6 .3 .1 .3  Motion Match 

Most similarity measures for motions are defined based on their corre- 
sponding key-frame sequences. A simple method is the Nearest Center 
(NC) algorithm. Zhang, et al. E307 proposed a Nearest Neighbor (NN) ap- 
proach, in which the similarity is defined as the sum of the most similar 
pairs of key-frames. As proposed by Zhao, et al. ~317 these methods neg- 
lect the temporal order of frames. To address the problem, they presented 
a Nearest Feature Line-based method. Though this method accommodated 
the temporal correlation between key-frames, it could only be applied to 
retrieving motions using a single frame as the query sample. 

Elastic match performed with a dynamic time warping algorithm is a 
nonlinear match method originally used in speech recognition and it has 
been successfully applied to online signature verification E32~. Elastic match 
can be used in comparison of all kinds of continuous functions about a con- 
tinuous parameter, which is time typically. 

Given two motions, M1 -- {Fll ,F12, "" ,FIN} and M2 = {F21 ,F22 , ' " ,  
F2M}, the distance D between them is defined as follows: 

N M 
1 

D =  y ( m i n  d( i ,ooa( i ) ) -k-min~d( i ,oo2( i ) ) )  (6-11) 
{r i =  {%(i)} i = 1  

where the first factor on the right part is the distance between M1 and the 
motion resulting from warping M2 according to the path defined by a time 
warping path col ( i ) ,  and the second factor on the right is the distance be- 
tween M2 and the motion resulting from warping M1 according to the path 
defined by w2 (i). d ( i , j )  is the distance between the ith frame of M1 and 
the j th frame of M2, defined as: 

d ( i , j )  = / ~ w , ( F I ~ - - F 2 j , )  2 

where FI~ and F2~k are the kth motion parameters in frame F1 and F2, re- 
spectively, and wk is the weight. 

Let the right half part of D be DA, defined as: 
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N 

DA = min~]d ( i , co l  ( i ) )  . 
{%~,, } i=  1 

Now let us take D A  for example to solve the problem. The time warping 
path, for example, col ( i ) ,  is constrained by the following boundary and 
continuity conditions. 

The boundary conditions ensure that the first and last frames of M1 are 
matched to the frame b and frame e of M2 :col (1) = b, ool ( N )  = e, 

b = m i n  arg (d(1 , i ) ~ t h r e s h o l d )  
i~<M 

where 
e = m a x  arg ( d ( N , i ) ~ t h r e s h o l d )  

i~<M 

The continuity conditions restrict the match of the intermediate frames, 
and col (i) is defined as a monotonically increasing function and thus the 
temporal order is preserved during match. We solve it recursively by ap- 
plying dynamic programming in the following way E337: 

D A ( i , j ) = d ( i , j ) q - m i n  { D A ( i - - I  , j )  , D A ( i - - I  , j - - 1 )  , 

D A ( i - - I , j - - 2 ) }  

D A ( 1 , b ) = d ( 1 , b )  

where D A  ( i - -  1 ,j -- 2) corresponds to skipping the (j -- 1) th frame of M2 
and D A ( i - - I , j )  means that at least two frames of M1 correspond to the 
j t h  frame of M2. 

6 . 3 . 2  Content-based Motion Retrieval 

By now, the motion index tree has been constructed. We describe motion 
retrieval using the motion index tree in this section. 

We devise a two-stage process to retrieve similar motions to a query 
sample M. Determine a subset that contains promising similar motions to 
M and calculate distances/similarities between M and motions in the sub- 
set. The process of motion retrieval is outlined as follows. 
Step 1 Fetch M1, the motion of the first-level joints, from the sample M. 
Step 2 Extract key-frame sequences from M1 to each motion in the sample 

set of Root in the motion index tree using the key-frame extraction 
described in Sect. 6 . 3 . 1 ,  and calculate the distances between them 
using elastic match. Then get the K-nearest neighbors. Let k 1 , k  2 , 

�9 " ,kc  be the number of the nearest neighbors belonging to the 
child nodes of Root: COl ,co2,"" ,COc, respectively. 

The decision-making function is defined as gi (M) = ki, i = 1 ,2 ,  
�9 " ,c and the decision-making rule is defined as follows: 

If g j ( M ) = m a x k i ( i = l , 2 , ' " , c ) ,  then M1 belongs coj, the j t h  
i 

child node of Root. 
Continue classification until a leaf node of  the motion index tree is Step 3 
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reached. Calculate the similarity between M and each motion 
stored in the subset in the leaf node, and select appropriate mo- 
tions as the result according to the similarity. 

6 . 3 . 3  Results and Discussions 

To validate the effectiveness and efficiency of the proposed technique, we 
develop a prototype system of Content-based Motion Retrieval (CBMR) 
and test it on a motion library consisting ot? about 450 different motions. 
The composition of the library is shown in Table 6.3. Detailed discuss is 
as follows. 

Motion class 

Table 6.3 Composition of the motion library 

Size of class Motion class Size of class 

Walk forward 70 Rotate 32 

Run forward 62 Run backward 32 

54 Climb 28 

48 Box 18 

45 Wave hand 12 

Walk backward 

Jump 

Squat 

Ballet dancing 36 Fall 12 

6 3 . 3  1 Key-frame Extraction 

Both the adaptive clustering based key-frame extraction algorithm and the 
sequential comparison based method, in which a frame is selected as a new 
key-frame when the difference between this frame and the last key-frame is 
significant, are implemented and tested. For convenience, these two algo- 
rithms are called ACE and CE, respectively. In both algorithms, the simi- 
larity between two frames is defined as the reciprocal of the weighted dis- 
tance between them. 

First ,  we carry out experiment on two non-periodical motions, jump- 
kick and dive. Jump-kick consists of 70 frames and dive consists of 50 
frames. The MaxSim value in ACE and the similarity in CE are shown in 
Fig. 6.25. For ACE, when the MaxSim value is below a given threshold, 
a new cluster is found and the current frame is selected as a new key- 
frame. From Fig. 6 .25 ,  it can be seen that totally 11 key-frames, inclu- 
ding the first frame and the other 10 new key-frames, are extracted from 
jump-kick, and totally 10 key-frames, including the first frame and the 
other 9 new key-frames, are extracted from dive. For CE, the frame with 
its similarity below a given threshold is selected as a new key-frame. From 
Fig. 6 .25,  we can see that totally 16 key-frames, including the first frame 
and the other 15 new key-frames, are extracted from jump-kick, and total- 
ly 14 key-frames, including the first frame and the other 13 new key- 
frames, are extracted from dive. The extracted key-frame sequences are 



222 A Modern Approach to Intelligent Animation: Theory and Practice 

0.40 i , i i | i 

0.30 -.-- MaxSim forACE 
-+ Similarity for CE 
B Threshold=0.02 

0.20 
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Frame 

(a) Jump- kick 
0 . 2 0  . . . . . . . .  

--- MaxSim for ACE ~ 
0 . 1 5  -+ Similarity for CE !~ Itt\ 

- -  Threshold=0.02 /ti I'~\ 

, i ,  !/ . ^  [ " . ,  
0.05 

0 
0 10 20 30 40 50 

Frame 
(b) Dive 

Fig. 6.25 Extract key-frame sequences from non-periodical motions using ACE and CE 

shown in Fig. t3.2t3. As shown in Fig. 6 .25 ,  more key-frames are extracted 
using CE than using ACE from both motions given the same threshold 
though the same similarity measure is adopted. Two reasons account for 
it. The maximum value in ACE is defined as the maximal similarity be- 
tween the current frame and the centroid of each cluster,  which means that 

the current frame is compared with the centroids of all the previously ex- 

tracted clusters. In CE, the current frame is only compared with the most 

recent key-frame, which rules out the possibility for the current frame to 

match the most similar key-frame previously extracted. Another  reason is 

that each motion is continuous, so the frames nearby are usually classified 

into the same cluster. Then the similarity between the current frame and 

the centroid decreases more slowly in ACE than that between the current 

frame and the last extracted key-frame in CE. As shown in Fig. 6 .27 ,  the 

similar key-frame sequences can be extracted by ACE at a relatively high 

threshold and by CE at a relatively low threshold. These results show that 

the performances of CE and ACE are similar for non-periodical motions. 

Second, two periodical motions,  power-walk and hurdle,  are tested on. 

Power-walk consists of 120 frames, and hurdle consists o{ 195 frames. 

Power-walk is composed of about 4 cycles of steps. From Fig. 6 . 2 8 ( a ) ,  we 
can see that using ACE, five clusters are formed in power-walk,  including 
the initial one and the appended 4. The first frame of each cluster is ex- 

tracted as a key-frame. All these key-frames are extracted from the first 30 
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Fig. 6.26 

0.25 

Key-frame sequences extracted from non-periodical motions 
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Fig. 6 .27 Key-frame extraction using ACE and CE with different thresholds. The 

key-frame sequence extracted from dive by ACE with threshold 0. 033 is 0 

4 6 8 9 10 18 20 27 28 29 43, and the key-frame sequence extracted by CE 
with threshold 0.025 is 0 4 6 8 9 11 18 20 27 29 32 45 

frames, which compose the first cycle of power-walk. No frames in the 
successive cycles are extracted as key-frames. This shows the compactness 
of the extracted key-frame sequence. When it comes to CE, totally 29 key- 
frames, including the initial frame and the appended 28, are extracted from 
power-walk. From Fig. 6.28 ( a ) ,  we can see that the last 28 key-frames 
can nearly be divided into 4 cycles and the last 3 seven-frame sequences are 
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Fig. 6.28 Extract key-frame sequences from periodical motions using ACE and CE 

almost  the repeti t ions of the first seven-frame sequence. 
The  exper iment  on hurdle shows similar result .  All these demons t ra te  

that  ACE is superior to CE when applying to periodical motions. 

6 . 3 . 3 . 2  Motion Match 

To evaluate the performance of the elastic match a lgor i thm,  we implement  

this a lgor i thm,  as well as other  methods ,  such as the NC method and the 

NN method ,  in our CBMR system. Some motions are selected from the li- 

brary shown in Table  6. 3 as samples for queries to evaluate each algo- 

r i thm. The  distr ibution of these samples is s tated in Table  6 .4 .  Based on 

these queries,  we plot the average precision-recall graph for each a lgor i thm 

as i l lustrated in Fig. 6 .29 ,  from which we can see that  elastic match is su- 

perior to both NC and NN. The  main reason is that  both NC and NN neg- 

lect the temporal  order among the frame sequence of a motion. For exam- 

ple, walk cannot be dist inguished from run,  and" walk-back cannot be dis- 

t inguished from walk-forward  either. Contrary  to NC and N N ,  the conti- 

nuity of the motion is preserved during the process of elastic match as a re- 

sult of the constraint of continuity as addressed in Sect. 6 . 3 . 1 . 1  The result of 

one query is shown in Fig. 6.30. Each row represents a motion. The top one is 

the sample. The retrieved motions are sorted by similarity from top to bottom. 
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Number of samples from each class is nearly proportional to the size of this class 

Motion c lass  Number of samples Motion class  Number of samples 
, 

Walk forward 6 Rotate 3 

Run forward 5 Run backward 3 

Walk backward 5 Climb 2 

Jump 4 Box 2 

Squat 4 Wave hand 1 

Ballet dancing 3 Fall 1 

1.0 
Q 

~ 0.8 

0 .6  

r 0.4  

0.2 
0 

' ' '-2Elast cGoh [ 
""~NN 1 

0'. ' ' ' ' ' 0' 0 t 1 0'.2 0.3 0 .4  0.5 0 .6  0 .7  .8 .9 1.0 
Recall 

Fig. 6.29 Performance of elastic match 

Fig. 6.30 Retrieval result of walk-forward 

The calculation overhead of elastic match using dynamic programming 

is O(rnn), where m and n are the lengths of the two compared key-flame 

sequences, respectively. When retrieving a similar motion,  the sample is 

firstly classified into the promising sub-library. The calculation overhead 

for the classification is O(hsmn), where h is the height of the index tree 

and s is the size of the sample set in each non-leaf node. After classifica- 

tion, only the similarities between the samples and motions from the very 
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sub-library are needed to be calculated and thus the efficiency is well im- 
proved, 

In this section, a content-based 3D motion retrieval algorithm is pro- 
posed. The main contribution is the motion index tree constructed based 
on the hierarchical motion description. This motion index tree features the 
hierarchical effect that each joint has on the full-body motion, and serves 
as a classifier to determine a sub-library that contains promising similar 
motions to the query sample. Thus the efficiency can be well improved. 
We adopt nearest neighbor rule-based dynamic clustering algorithm to par- 
tition the motion library and construct the motion index tree. We employ a 
novel elastic match algorithm to calculate the similarity between two mo- 
tions. The elastic match algorithm combines the dynamic time warping and 
dynamic programming, and has excellent performance on comparing two 
sequences. To improve the efficiency, we adopt an adaptive clustering- 
based key-frame extraction algorithm, which is especially competent for 
key-frame extraction from periodical motions. 
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Intelligent Motion Data Reusing Techniques 

In order to reuse the existing 3D human motion data to create animation 
and improve the efficiency of animation creation, the motion reusing tech- 
nique is becoming a hotspot in research. Generally, the motion reusing in- 
cludes motion editing, motion synthesis and motion retargeting, etc. 

The intelligent motion data reusing techniques are different from tradi- 
tional ones, which need a great deal of laborious work from animators. It 
emphasizes on the process of reusing motion data automatically and intelli- 
gently. This chapter is based on author 's  research on motion data reusing 
in these years and will illustrate in detail the motion editing and synthesi- 
zing based on wavelet transform, the motion graph model based on Mark- 
ov chain and the automatic editing and synthesizing in human motion style. 

7 . 1  3D Motion Editing and Synthesis Based on Wavelet Trans- 
form 

Motion Capture (MoCap) data editing is critical in creating complicated an- 
imation and improving the reusability of motion data. This section pres- 
ents a 3D computer animation technique, which can control the motion de- 
tails and deal with the motion abstractly. This technique manages the mo- 
tion data both in frequency and spatio-temporal domain. First of all, it a- 
dopts wavelet transform to analyze the motion signal in multi-resolution, 
and realizes the motion feature enhancement, motion blending and motion 
feature extraction, etc. Then according to the motion feature and anima- 
to r ' s  requirement, the spatio-temporal constraints are added into the mo- 
tion and the objective function is built and resolved to retain motion reality. 

7 . 1 . 1  Hierarchical Motion Description 

The human model used in the research is shown in Fig. 7. 1, which in- 
cludes 16 joints. By using MoCap system the positions of these 16 joints 
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can be obtained. Using joints '  positions to describe motion is inconvenient 
in utilizing these data,  since joints '  motions are independent by using this 
kind of description. In our research, the human motion is described hierar- 
chically by a tree model (Fig. 7 .2)  El?. The root of the tree corresponds to 
the root joints in human model and other nodes correspond to other joints. 
The motion composed of translation and rotation includes root n o d e ' s  
translation and the lower node '  rotation according to the upper node. The 
root rotation determines human m o d e l ' s  orientation and other nodes are 
rotated in the parents '  coordinating systems,  whose origins are their cor- 
responding upper nodes. The jo in ts '  positions can be calculated by the 
length of bone and rotation vector. For example,  in Fig. 7.1 the right an- 
kle, whose position and rotation vector is. 

~W 
P~..Ankle ('-7C' y ,  z) = TRootRRoot TR._HipRR_Hip TR_KneeRR_Knee TR_AnkleRR_Ankle ~I~Ankle ~ X,  y ,  z)  

(7-1) 

here w PR_A.kXe ( X ,  y ,  Z)  represents right a n g l e ' s  world coordinate and 
L PR_A.k le (X ,y , z ) represen ts  right a n g l e ' s  initial coordinate in right k n e e ' s  

coordinate system. TI is a vector translating joint ! from current coordinate 
system to its p a r e n t ' s  coordinate system. Rt composed of three rotation 
vectors according to x ,  y ,  z axis, rotates the joint ! around its parent. 

After calculating the rotation vector according to equation (7 -1 ) ,  the 
human motion can be described as. 

M ( t )  ( w = T ~ o o , ( t ) , R x ( t ) , ' " , R ~ ( t ) , ' " , R n ( t ) )  ( / = l , 2 , - . . , n )  

where w T~oot (t)  is the world coordinate of Root and R~(t )  is the joint l '  

tation vector at time t. 
S ro- 

7.1.2 Motion Signal Analysis by Wavelet 

The multi-resolution analysis of wavelet,  which focalizes on any object '  
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details, has satisfied localization features in both temporal and frequency 
domains, so the adoption of wavelet in motion editing can effectively con- 
trol the motion details. The low frequency part in wavelet analysis repre- 
sents the motion's elementary features, which can be effectively edited. 

Supposing the dispersed value (C ~ of motion signal f ( t )  ( f E L  2 (R)) is. 

C o = {C~j } (j ,nE Z, O ~ j < n ,  2 m ~ n < 2  m+l ) 

where n is the number of input motion's frames, m is the frequency band 
of motion signal. According to multi-resolution's definition: 

V o : V m O W m @ W m _ l O . . . O W l  (7-2) 

If f ( t )  is extended by equation (7-2) and according to wavelet transform: 
o o  c o  

f(t) = ~ ~dj,,*i,, (t) ~ Cm,k~m,, (t) 
k = - - c o  j -= 1 k = - - o c  

(7-3) 

di,k = ( f ( t ) ,  ~Ui,k (t)) (7-4) 

Cm,k = ( f ( t )  ,r ( t )  ) (7-5) 

where ~p(x) and ~ ( x )  are corresponding scale function and wavelet func- 
tion. Equations (7-4) and (7-5) can be adopted in motion signal analysis, 
while equation (7-3) is used in rebuilding motion signal. 

7 . 1 . 3  3D Motion Analysis and Synthesis Based on Wavelet Transform 

7.1.3.1  Motion Feature Enhancements 

By analyzing the motion in frequency domain, the subparts in motion sig- 
nal with different frequency bands represent motion features on different 
layers. The low frequency part represents mot ion ' s  elementary features 
and the high frequency part represents motion's  details. The motion fea- 
tures can be enhanced or weakened to create new motion by dealing with 
the signal in corresponding frequency band. For example, the enhance- 
ment of the high frequency part in the motion signal can strength some 
motion details. The motion feature enhancing algorithm is elaborated below. 

The initial motion signal is supposed to be f ( t ) .  According to equations 
(7-4) and (7-5), the motion signal is described by equation (7-3), so the 
enhancement of motion signal g(t)  is: 

g(t)  = Z kj,idj,illli,i(t) -+- ~ riCm,itpm,i(t) (7-6) 
i = - - o o  j = 1 i = - o o  

where ki,i, ri are weights used for motion signal enhancement. 
Through such a gain controller in frequency band, the animator can edit 

the motion data. For example, given a series of normal walk (see Fig. 7. 
3), coordinating motion signal's low frequency part of left (right) hip 
joint and left (right) knee joint can achieve the walk motion editing with 
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varied steps; the arm's  motion with varied swing step can be obtained by 
coordinating the low frequency part of the left (right) shoulder's motion. 
By enhancing the high frequency part in left (right) knee ' s  motion, the 
trembling details in walking process are stressed to obtain the jittering 
walking. 

7.1 .3 .2  Motion Blending 

The motion blending based on wavelet transform decomposes the input o- 
riginal motion data into varied frequency feature domains, and different 
weights are adopted to create new motion. 

Before decomposing and blending the motion, the input motion signal 
must be processed synchronously. For example, the motion of walking 
and running must be coordinated synchronously. The time warping, which 
is commonly used in audio processing, is adopted here. 

g(t)=f(h(t)) (7-7) 

in which the piecewise linear function h(t) is time warping function; f ( t )  
is the original motion signal and g(t) is the motion signal after using time 
warping. For any two motion signals, the animator will appoint several 
time corresponding points. One of them is assumed to be the reference sig- 
nal. According to equation h (t) and equation (7-7),  the synchronization 
can be achieved between the two motion signals (shown in Fig. 7.4). 

Since the motion data are discrete, there are two problems existing in 
the original motion signal sampling process: (1) when h ' ( t )  is less than 1, 
how to determine the motion information existing in the two frames in o- 
riginal motion; ( 2 ) h o w  to solve the problem of insufficiency sampling 
problem. The first problem can be solved by linear interpolation or cubic 
interpolation, since in motion signals the time interval between two con- 
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secutive frames is short; {or the second 
problem, the reference motion should 
be changed to diminish h' ( t ) .  If there 
are only two motions, then h ' ( t ) =  (h '  
0 ( t ) ) - 1 < 1 ,  in which h0 (t) is the initial 
time warping function. 

The blending algorithm based on 
wavelet transform can be used in syn- 
thesizing new motion after constructing 
the synchronous relationship in the ini- 
tial motion signals. The algorithm is 
described as follows. 
Step 1 Decompose the signal of joint l, 

f~ , t ( t ) ,  in the ith motion signal 
by using wavelet analysis, then 
di,z,,,k and ci,z,~,k ( 1 ~ j  ~ m) can 

Step 2 

Signal . . . . . . . . . . . . . . . . . . . . . .  : i 

y 

Fig. 7.4 Time warping function. 
fz is the reference function; time 
warping function h hchieves the sy- 
chronization of fl and f2 

be obtained, m is number of layers in wavelet analysis. 

di,t,j,k -- ( fi,l ( t ) ,  ~j,k (t) ) ~ ( 7 - 8 ) 

C,,lO,k= ( f ,,l(t) ,r (t) ) J 
Apply the blending weights a~,~,j = {m,t,j,k }kez in the motion 
signal's low frequency parts and dz,s,k is calculated as. 

Step 3 

Step 4 

dt,j,k = 2 ai,l,j,k d ~,l,j,k (7- 9) 
i = 1  

Apply the blending weights Oi,z,j = {fli,z,j,k }/ez in the motion 
signal's high frequency parts and the synthesized high frequency 
part el,j,k is. 

el,j,  k -'- 2 . ~ i , l , j , k  C i,l,j,k ( 7 - 1 0 )  
i = 1  

Create new motion signal by reconstructing the wavelet analysis 
coefficients of the synthesized motion signal. 

By adopting the above algorithm in synthesizing Catwalk and natural 
running, the Cat-running can be created by choosing appropriate blending 
weights (shown in Fig. 7.5). 

7.1.3.3 Motion Feature Extraction and Synthesis 

By analyzing motion signal in frequency domain, we find that the signals 
with different frequency bands have different features, which can be ex- 
tracted and synthesized with the main motion signal to create new motion. 
We adopt the high and low frequency complementary algorithm (see Fig. 7.6) in 
motion feature extraction and synthesis. Firstly the algorithm decomposes 
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the input motion signals into approximate part and particular part. The ap- 
proximate part, which is calculated by scale function having low pass filter 
t?eatures, reflects the original motion. The particular part is calculated by 
wavelet function and represents the information in original mot ion ' s  cer- 
tain frequency band. In motion feature extraction, the approximate part is 
chosen to reflect new mot ion ' s  basic features, and the particular parts in 
other motions are chosen to reflect new motion's details. 

Since the feature extracted from the signal is particular part, the origi- 
nal motion needs not to be similar. The motion synchronization can be a- 
chieved by using the time warping algorithm introduced in the last section. 

In the following part a new motion called Cat-running is synthesized by 
extracting the detail t?eatures from Catwalk motion and the approximate part 
from running motion. This example shows how to extract the motion features 
and synthesize new motion by using the complementary algorithm. 
Step 1 Running is determined to be the dominant motion. 
Step 2 By analyzing the original motion, the Catwalk is reflected by the 

motion of left (right) hip. 
Step 3 Synchronize the original motions by using time warping algorithm. 
Step 4 Analyze the left (right) hip 's  motion signal by using wavelet. The 

approximate part in the dominant motion (running) is chosen to 
be the approximate part in the new motion, and the high frequen- 
cy part in the lower frequency band is chosen to be part of the par- 
ticular part. Other particular parts are chosen from Catwalk. 

Step 5 Reconstruct the motion signal according to equation (7-3) and the 
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new motion signal with Catwalk features can be created. 
The constructed left ( r ight)  h ip ' s  motion can be replaced into the 
left ( r ight)  hip '  s motion in the original running,  so the Cat-run- 
ning can be obtained (in Fig. 7 .7) .  
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7 .1 .4  Management of Motion Reality 

The  motion reality is guaranteed by a series of constraints which are em- 
bedded in the original motion data. Some motion editing operations will 
break several constraints and the manipulations in frequency domain can- 
not guarantee the reality. Since the motion is a series of changing postures 
according to time, some constraints are added into spatio-temporal domain 
in the editing process and the damages of the constraints supporting mo- 
tion reality will be reduced. 

We adopt the motion optimization algorithm based on spatio-temporal 
constraints [2, 3-] to optimize the motion data in frequency domain, so the re- 
ality of the new motion is guaranteed. The algorithm is described bellow. 
Step 1 Make sure a set of spatio-temporal constraints ,  and adopt the for- 

malization method to define it. 
Step 2 Define the object {unction for motion optimization. 
Step 3 Adopt the Inverse Kinematics ( IK)  and Numerical Optimization 

Method to create new motion. 
Step 4 If the request is not met ,  the spatio-temporal constraints or opti- 

mized object function are formalized again to create new motion. 

7.1.4.1 Spatio-temporal Constraints 

The purpose o{ using spatio-temporal constraints is to preserve several in- 
herent at tr ibutes and control the mot ion ' s  variation. It can be described by 
a set of equations. 

F ( t c , m )  = c (7-11) 

where tc represents the time of restriction and m is the motion parameters ,  
which can be described by position coordinates or by rotation and transla- 
tion, c is the matr ix of scalar quanti ty,  F(tc, m) is the motion in corre- 
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sponding frame. 
The spatio-temporal constraints from virtual environment and animator 

are listed below. 

�9 The constraints on the character: 

[ T(t) Co 
M( t ) - -  lRi(t)  ]-- [C1] 

in which M(t)  represents the parameter of rotation and translation, 
T(t) is a vector representing the position of Root at time t,Co is the 
translation constant, Ri (t) is the rotation vector of joint i at time t, 
C1 is the rotation constant. 

�9 The constraints on the character '  s supporting point, p~ ( t )  = C2, in 

which p~(t) represents the position of joint i at time t, C2 is the posi- 
tion constant. 

7.1 .4 .2  Objective Function 

The objective function regulates the entire motion. The function of energy 
consuming and the function of motion discrepancy before and after editing 
are assumed to be object functions. Since the objective function is de- 
scribed by motion parameters, which have different effects on postures, 
the parameters '  sum of weighted square is adopted to describe the objec- 
tive function. In our motion editing system, two kinds of objective func- 
tions are adopted. The first one is to minimize the errors summation of the 
joints before and after editing: 

min (sum = I P, (t) -- 1~, (t) II 'd t  (7-12) 
, ,  h = l  

where p~ (t) is the kth jo int ' s  position vector after editing, l~(t) is the kth 
jo in t ' s  perfect position before editing, tstart and tend represent motion editing 
interval 's  start and end point respectively. 

The second one is to minimize the error summation of the motion pos- 
ture before and after editing: 

rrfin ( sum = (va [I T(t) -- ~F(t) II 2 + w2 2 II (t) --l~k (t) II =)dt (7-13) 
, .  k = l  

where T(t) and T(t) represent the translation vector before and after edi- 
ting respectively, Rh (t) and Rk (t) represent the kth jo int ' s  rotation vector 
before and after editing respectively, w~ and w2 are the weighted values of 
the formalized translation vector and rotation vector. 

7 . 1 . 4 . 3  Solving Method 

In the motion editing method based on spatio-temporal constraints, the dy- 
namics and IK are usually adopted to solve the spatio-temporal equation. 
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The dynamics determines character 's every joint' position and orientation 
directly, while IK calculates the joints' position and orientation according 
to user 's  intervention. 'Comparing with dynamics, IK can reduce the labo- 
rious work, since the user only needs to designate the position of the end 
joint, and other joints' positions can be calculated by IK module automati- 
cally. Although IK approach can resolve all the results, its computation 
cost is huge. We use MoCap data as initial value and combine the IK ap- 
proach and Numerical Optimization Method to resolve the spatio-temporal 
constraint problem. 

7.1.4.4 An Example of Optimization Algorithm 
. .  

As described in Sect. 7 .1 .3 ,  the motion enhancement algorithm is adopted 
to create walking with varied steps from normal walking motion. These 
new motions have lost some kind of reality: (1) In some frames the foot 
gets onto ground shown in the 9th, l l t h ,  13th frames in Fig. 7 . 8 ( a ) ,  or 
two feet leave ground shown in the 1st, 3rd, 17th frames; (2) When the 
steps are increased, the "foot-skating" appears; whereas the "hurtling" 
appears when the steps are reduced. 

Problem (1) happens, because the new motion breaks the constraint 
that in the walking at least one foot must stay on the ground; problem (2) 
happens, because new motion breaks the constraint that in the walking the 
footprint should not be changed. Because of these two problems, the con- 
straints for the human motion are determined, like fixing PR_Ankle(X,y,z)  , 

and according to equation (7-1) and IK approach, the TRoot can be calculat- 
ed. The satisfied motion gestures are shown in Fig. 7 .8(b) .  

Fig. 7.8 Motion optimization in walking 

7 . 1 . 5  Results 

7.1.5.1 Motion .Enhancement 

Inputting an adul t ' s  natural walking (Fig. 7.9 (a) )  and by enhancing the 
motion' s left (right) hip, left (right) knee Rx and left (right) shoulder 
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R y ' s  low frequency signal,  the step of the motion is enhanced. The  natural  

walking with vigorous strides is shown in Fig. 7 .9(c) .  If the high frequency part 

is enhanced, the walker ' s  nervousness can be expressed (Fig. 7.10).  
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Fig. 7.9 Steps increasing in motion enhancement 

7.1.5.2 Motion Blending 

The algori thm of motion blending can effectively synthesize the motion 

with different features to generate  new motion retaining the original mo- 

t ion '  s features.  Since wavelet  t rans form has satisfied performance for 

mult i - resolut ion analysis ,  it can be adopted in varied feature domains. Dif- 

ferent blending weights  are utilized to generate  new motion. 
For example ,  a normal running (Fig. 7 . 1 1 ( a ) )  is used as the initial in- 

put to blend with walking motions having varied styles (Fig. 7. l l ( b ) ,  (d)  

and ( f ) ) .  Fig. 7 . 1 1 ( c ) ,  (e) and (g)  show the blending results.  It can be 

seen that  not only cha rac t e r ' s  gestures  (Fig. 7 . 1 1 ( b ) ,  7 . 1 1 ( d ) ,  ( c ) ,  ( e ) )  

but also their emotions (7-11(f) ,  (g) )  are translated into the new motions. 
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Fig. 7.10 Trembling walk in motion enhancement 

7.1.5.3 Motion Feature Extraction and Synthesis 
In the algori thm, the specific features,  which are reflected by motion sig- 
na l ' s  frequency domain, are firstly extracted to fuse with the designating 
dominant signals. For example,  in Catwalk (shown in Fig. 7 . 1 2 ( b ) ) ,  the 
swift motion of thigh is extracted to fuse with running to produce a new 
motion (Fig. 7 . 1 2 ( c ) ) .  First ly the input motion signal is decomposed into 
4 layers by using wavelet. By analyzing the motion signal (Fig. 7 . 1 2 ( a ) ) ,  
the high frequency part D3, D2 and D1 reflect the features of Catwalk. 
They are combined with the corresponding jo ints '  low frequency part A4 
and D4 to create the new motion (see Fig. 7 . 1 2 ( c ) ) .  

This section proposes a motion editing algori thm, which can manipulate 
the motion data both in frequency and spatio-temporal domains. First ly 
wavelet t ransform is adopted to analyze the motion data. The algorithms 
of motion feature enhancement,  motion blending and motion feature ex- 
traction and synthesis are achieved. Then according to the an imator ' s  re- 
quests ,  the spatio-temporal constraints are added into motion to retain the 
motion reality. The experimental results show that these algorithms can 
not only edit the motion abstractly and conveniently, but also retain the 
motion reality. 
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Fig. 7.11 Motion blending 

7.2  Motion Graph Modeling Based on Markov Chain 

In this section a motion graph based motion synthesis f ramework is dis- 
cussed in detail. First  the motion units are picked up from motion database 
by using greedy algorithm. Each unit is defined to be a motion segment re- 
presenting basic dynamics,  and the units with similar dynamic features are 
grouped into one cluster. The motion is modeled to be a first-order Mark-  
ov process and the motion clusters are used as the states in Markov chain. 

The connection between motion clusters are modeled by a directed graph 
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Fig. 7.12 Motion extraction and synthesis for Catwalk 

called motion graph. Finally a new motion can be created according to the 

motion graph in following two steps:  ( 1 ) f i n d i n g  a path on the motion 

graph,  which is composed of the motion units;  (2)  connecting these units 

smoothly.  In this f ramework ,  two 
motion synthesis techniques are pro- 

posed: a series of similar but not t h e  

same motions are generated for the 

crowd animation bY randomly motion 

sampling,  and new motion can be gen- 

erated along the synthesized motion 

path. 

7 . 2 . 1  M o t i o n  Graph  Bui ld ing  

The motion graph is a new motion de- 

scribing method ,  which represents  the 

connection of the motion segments in 

the l ibrary,  as show in Fig. 7.13.  In the 
Fig. 7.13 Motion graph 
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motion graph, each node represents a motion segment, which could be a 
frame or a series of frames~ the directed edge i j ~ s  weight means the con- 
necting degree from i to j .  In Arikan and Forsyth~s E4~ research, each node 
is a motion frame and the connecting degree is promoted a lot. But the 
weakness is that the constructed motion graph has so many vertexes and 
the new motion does not have smooth transitions between frames. If a long 
motion segment or the whole motion is used as the vertex, the realistic 
movement can be retained; however the motion g r aph ' s  connectivity and 
underlying space for new motion synthesis are sacrificed. 

Our strategy is to take the extracted motion cluster from MoCap data as 
the vertex in the motion graph, which is similar with Li~s approach E~. 
The motion units are kept in the motion cluster and the new motion is cre- 
ated from these units, so the new motion can perfectly retain the motion 
reality and enlarge the underlying motion synthesis space. 

7.2 .1 .1  Extraction of Motion Unit and Motion Cluster 

The motion unit is formalized to be a basic motion segment showing the 
motion~s dynamic features, and can be described by a second-order dynam- 
ic motion model: M D =  {F0 ,A,B},  in which F0 is the initial frame, A and 
B are dynamic parameters. Each frame F, in the motion unit can be ap- 
proximately rebuilt by corresponding dynamics model: 

F, -- Fo + A t  2 -k Bt 

The motion units having similar dynamic features are clustered into a 
group called motion cluster. 

�9 M C - -  { MD, MP1 , MP2, "'", MPN } 

where MD is a public dynamics model, MPi is the motion unit in motion 

cluster MC. 
Here the algorithm is described in detail by using a character composing 

of a global position, orientation and other 17 joints. Each gesture (frame) 
can be formalized to be a vector having 57 dimensions, so the motion M 
having T frames can be represented by a T X 57 matrix. In order to reduce 
the computing complexity, M is decomposed by Singular Value Decompo- 
sition (SVD) algorithm, and the dominant motion is extracted: 

M = U A  V w 

where U is a TX T matrix, A is a TX 57 matrix, and V is a 57 X 57 matrix. 
Let Ul-q be a T X  q matrix, the algorithm of extracting motion units and 
motion cluster from MoCap data is elaborated below. 
Step 1 Pick the motion M from the library and apply SVD to get the ma- 

trix U~_q. 
Step 2 Take the first Zmin frames from Ul-q and form the motion segment 
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tMP1 , apply the least squares method to calculate the second-order 
dynamic model Ax-q, Bx-q and F0,x-q corresponding to the tMP1. 
Keep taking the next frame in Ul-q and add it into tMP~ until the 
error exceeds a fixing threshold. 

Step 3 Rebuild DM1, which includes A, g and F0: 

T B~ Aq•215 
0 3X57 O , l ~ q  3Xq 

where Aqx57 is composed of the first q rows in A, and then the 
frames corresponding to tMPI are chosen from M to form the mo- 
tion unit MPI. 

Step 4 Use MD1 and MP1 to initialize MCI. 
Step 5 Take Tmin frames from the left Ux-q and the procedure similar with 

Step 2 and 3, and extract motion unit MPi and dynamic model 
MDi . 

Step 6 Calculate the distance between the dynamic model MDi and the ex- 
isting dynamics model extracted from the motion clusters. If the 
minimal value is below a threshold, the MP~ is added into this mo- 
tion cluster; otherwise MD~ and MP~ are applied to initialize MCi, 
and a new motion cluster is created. 

Step 7 Repeat Step 5 and 6 until the motion M is finished. 
Step 8 The algorithm is stopped, if the entire motion library is finished~ 

otherwise another motion is decomposed by using SVD and it is 
skipped to Step 5. 

The distance between two dynamic models is formalized to be the sum- 
mation of the distance between Roots and the distance between gestures. 

dis(MDi ,MDk ) --fldis_ t(MDi ,MD~ ) -+- ( 1--fl)dis_ p(MD~ ,MDk ) 

where dis_ t (MD~, MDk ) represents the distance between Roots, 
dis -p (MD~,MDk)  is the distance between gestures, /3 is the weight and 
set to be 0.3. Since it is meaningless to compare two mot ion 's  initial posi- 
tions and orientation, dis_t(MD~ ,MDk) is defined to be the minimum val- 
ue of translation vector T and rotation vector R: 

L 

dis_ t(MDi ,MDk) -- min ~ [a[ ( R .  MDp~ + T) -- MDp~ )2 + 
R , T  t = l  

(1 -- a) ( R �9 MDo~ -- MDo~ )2 ] / L 

where MDpe is MDi ' s  position at time t, MDo~ is MD~ ' s  orientation at time 
t. L is the time interval in calculating distance and it is set to be 6, a re- 
flects the effects of the position parameter and orientation parameters in 
calculation procedure and it is set to be 0.8. dis_ p(MDi ,MDk) is the dis- 
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tance between the gestures contained in MDi and MDk: 

L 

P ( M ~  i 9 ] ~  k ) - -  ~ ~11ZU j ( M ~  jit - -  ] ~ / ~  jkt ) 2 / L  dis_ 
t=l j 

where MD,, is joint j ' s  rotation in MD~ at time t, w, reflects the joint j ' s  

effect. 

7.2.1.2 Motion Graph Construction 

Based on previous research [-5,6] , w e  adopt the first-order Markov chain to 
model the motion. Each state is formalized to be a motion cluster and the 
next state is only determined according to current state. But our approach 
is different with Lee, et al. ' s  work E6~ which uses one frame to be a state. 
Our approach uses one motion cluster to be a motion state and it reduces 
the correspondence between current state and other states, so the first-or- 
der Markov chain is more adaptive in modeling motion. Transferring from 
state i to state j is formalized to be the value of connectivity between mo- 
tion cluster MCi and MC,. Each motion in the motion library is defined to 
be a first-order Markov chain, so the entire motion library can be represen- 
ted by a motion graph G: 

C=(V,E} 

V= { MC1 ,MC2 , ' " ,  MCN~ } 

E =  {ei) = P ( M Q  IMCi) l l ~ i , j ~ N m  } 

In motion graph G each vertex is a motion cluster, the directed edge 
e0 from vertex MCi to MC, is defined to be the value of connectivity. A u- 
sual approach used in calculating e0 is statistic. For example, Li, et al. Es? 
counts how many times the connection between motion cluster MCi and 
MC appears in the motion library and the result is used as the initial value 
for e0. The statistical method shows the dynamics features between origi- 
nal motion data. Its primary weakness is that the potential motion genera- 
tion space in the constructed motion graph is limited by the original motion 
library. Another method in calculating connectivity ~6,z? is to calculate the 

similarity between frames Fi and F t. Similarly we define e0 to be the maxi- 
mum similarity between motion units in MCi and the motion units in MC,. 
This approach takes the actual connectivity between two motion clusters. 
In order to retain original mo t ion ' s  dynamic features and the size of the 
underlying space for motion synthesis, we adopt both these two statistical 
approaches to calculate e0: 

eo = ae s + (1- -  a)e~ 

Nu~ --1 
S _._ e 0 2 ( ~ ( ~ k  ~ MCi)r~(MP~I ~ MCj) 

k=l 
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e/~ = max sim ( MP ik , pre ( MP j~ ) , L ) 
M P  ~ E MC, , M P  t E M E  

where e s represents the connecting times between the motion units in clus- 
ter MC~ and MC~ in the original motion library. (~(MP~ E MC~ ) is 1 if MPk 
belongs to MCi, otherwise it is 1. Nup is the number of motion units ex- 

tracted from motion library, e P is the maximum similarity between the mo- 
tion units in MC~ and MCj. In calculating the connectivity from one motion 
unit to another motion unit, the hinder part is more important than the 
frontal part,  so only the hinder parts in both two motions are used in cal- 
culating similarity, which is defined below. 

sim (M~ ,Mk) = fl sire_ t(Mi ,Mk) + (1 -- fl) sim_ p(M~ ,Mk) 

L 

sim_ t(Mi , M k  ) - -  exp {-- min 2 [-a((RMp~ + T) -- Mpkt )2 _~_ 
R , T  t = l  

sire_ p ( M i , M k ) =  exp I - -  t ~  ~= ~jwj(Mjit--Mjkt)ZL 

where sim(Mi ,Mk) represents the similarity between M~ and Mk, and sire_ 
t(Mi ,Mk) represents the similarity of Roots '  motion. Mpe and Mo~ repre- 
sent Root ' s  position and orientation in frame i. sire_ t(M~ ,Mk) defines the 
maximum similarity between the Roots in M~ and Mk when the rotation 
vector R and translation vector T are optimal E8j. sire_ p ( M i , M k )  is the 
similarity between gesture Mi and Mk. Mjit is the joint j ' s  rotation vector 
at time t in M~, and wj represents joint j ' s  effect. At last the initialization 

result is united and ~ N i=le0 = 1 , in which NMC is the number of vertexes 

in motion graph G. Additionally, if the former motion unit is not found for 
MPj ,  the connectivity is set to be 0.5. 

7 . 2 . 2  3D Motion Generation Based on Motion Graph 

In this section the two-step motion synthesizing framework is described in 
detail. The new resolutions are proposed in two challenging domains by u- 
sing this framework: (1) propose the random motion sampling techniques 
and create a series of similar motions for crowd animation; (2) propose 
motion path synthesizing techniques and create the motion, in which the 
character moves in a planed path. 

7 . 2 . 2 . 1  Random Motion Sampling 

Crowd simulation is always a challenging topic and can be used in many 
fields ~9137. Here we concentrate on generating motion for crowd simula- 
tion. In the crowd, each character 's  motion should be similar with other 
characters but still has its own features. Using traditional key-frame tech- 



246 A Modern Approach t o  Intelligent Animation: Theory and Practice 

niques to create motion for each character is a tedious job. Although the 
MoCap data provide a feasible way in creating photorealistic animation, it 
is not appropriate for crowd simulation, since the generated motion will 
have uniform motion styles and it is impossible to capture the motion for 
every character. Here a new idea for creating crowd animation will be put 
forward: firstly an initial motion cluster or motion series are designated by 
the animator, and then a motion path composed of motion clusters is cho- 
sen in the motion graph, after that the random sampling techniques are a- 
dopted to create a series of motion units from the motion cluster path. 
These motion units are smoothed to form a new motion. 

7 .2 .2 .2  Motion Path Generation 

If the animator only designates the initial motion cluster, the next frame in 
the motion path is chosen to be the cluster having the largest connectivity 
in the motion graph. This procedure repeats many times until the motion 
path M$~ = {MCkl ,MCkz ,"" ,MCkN } meets the requested length. 

If the animator designates a series of key motion clusters M S , =  {MC, I, 
MCsz,"" ,MC, N }, the motion path can be formed by synthesizing the inter- 
val motions. For example, the sub-path MS,1.,2 connecting key motion 
clusters MC,1 and MC, z can be solved by such a optimization problem: 

MS,l,,2 - -arg  maxP (MCkl ,MCkz , .." ,MC~ ] 

MC, I = MC,1 , MC~ = MC, z , G) 

where H represents the gathering of all the paths from MC,1 to MC, z in mo- 
tion graph G. Since the motion graph is based on first-order Markov chain 
c67 the optimization problem can be transformed to search the shortest 
path in a directed graph: 

MS,I.s2 = arg max P (MC,~I ,MCkz ,"" ,MC~ ]MCkl =MC,1 ,MCt,, =MC,z ,G) 
1I 

= arg max P (MCk2 ] MC, I ) P (MCka ] MCkz )"" P (MCsz I MC~_ a ) 
11 

= arg max lg P(MCkz ]MC,. ) P(MCka [MCkz )"'" P(MC,2 ] MCk,-1 ) 
I1 

= a r g  mini--- (lg P(MCk2 ]MC, I ) + l g  P(MCka ]MCk2) + 
/ /  

�9 .. -F lg P (MC, z I MC~ -1 ) ) "7 

where P(MCkj [MC, ) represents the connectivity from MC,~ to MCkj in mo- 
tion graph. A new directed graph is constructed to solve the above prob- 
lem and it uses each motion cluster to be vertex and -- lg  P(MCkj [MC,~) to 
be the edge weight from MC,~ to MCkj. Thus,  the above optimization prob- 
lem is transferred to be a shortest path searching problem. Dijkstra algo- 
rithm ~14j can perfectly solve this problem and the time complexity is 
O(N~c) ,  in which NMc is the number of motion graph G ' s  vertexes. 

After getting the motion path, the motion unit sequence is extracted. 
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There are more than one unit in each motion cluster, therefore the random 
sampling strategy is adopted to extract unit from the cluster. One motion 
path can generate a series of motion unit sequences, which have similar 
motions but different styles. 

7.2.2.3 Motion Unit Sequence Connecting 

After generating the sequence, each motion unit should be smoothed. Let 
M R  be the motion unit sequence formalized as M R  = { MPzl, 114Pz2,'", 
MP~N } ; let MP~i be the motion by connecting motion sequences from MP~ 
to MP~i, MP~,i+~ is the next motion unit connecting to MP~i,  and the algo- 
rithm is as following. 
Step 1 Translate Mez,i+l, let its first f rame's  Root position superpose the 

Root positon of MPI_~ ' s  last f rame.  
Step 2 Rotate Mez,i+l, let its first f r ame ' s  Root orientation be parallel 

with that of the last frame. 
Step 3 Form a motion m a t r i x  M"2T~X57 by M P I - i ' s  last Tb frames and 

? MP~,~+I s first Tb frames, and use the Gaussian convolution tem- 
plate to smooth the 
M~• 
MET, x57 =G2T~ • M'2T~ XS7 

go (0) 
gl  ( - - 1 )  

G2r~ • = 

2r-1 (--2Tb +1)  

g0(1) "" g0 (2Tb--1) 
g l ( 0 )  "'" gl(2Tb--2) 

: 

g2r~-~ (--2Tu + 2 )  ... g2r~-~ (0) 

gi(t) = p(t)/ ~_ [(t) 

Step 4 

Step 5 

7.2.2.4 

where [ ( t )  represents the standard Gaussian distribution. 
Use the motion transformation matrix M2T~• to renew the motion 

MPI_~ and motion unit MP~,~+~. First use M2r~xa7 s first Tb frames 

to take the place of MP~_~ ' s last Tb frames, then u s e  M2T~X57 S last 

Tb frames to take the place of MPl,i+l s first Tb frames. 
Connect MP~,~+~ to MP~_~ and create anew motion MPI-i+i. 

Motion Path Synthesis 

It is an important task to generate a path for the character in virtual real- 
ity, animation and 3D games. Since it is hard to guide the characters along 
different path, Gleicher ~ls? proposed a motion path editing method, which 
can help the animator to edit the path o{ existing motions interactively. 
However this method often makes the motion distortion, especially when 
huge differences exit between the new path and that of original motion. 
Therefore, based on the motion g r a p h ' s  synthesizing framework, we a- 
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dopt a motion path synthesizing technique to create a motion with a new 
path. 

Let R be the path and the motion along this path is created by using the 
following two steps: firstly find the motion unit sequence, which corre- 
sponds to path R in the motion graph, and then connect these motion units 
according to R. 

7.2.2.5  Motion Unit Sequence Extraction 

We adopt the steps similar to Sect. 7. 2. 1. 1 to extract motion unit se- 
quence: firstly a motion path is explored in the motion graph, and then a 
motion unit sequence is chosen from the motion clusters. Here the best 
motion path should satisfy the following two conditions: matching the mo- 
tion path and the adjacent motion unit (cluster) should be connected natu- 
rally. According to these two conditions, the best motion path MS is. 

MS--arg  m a x P  (MCkl ,MCk2 ,"" ,MC~ ]MCkl =MC,1 ,R ,G)  
1-1 

Similarly, according to the motion graph based on first-order Markov 
chain, the above optimization problem is transferred to find the shortest 
path problem in a directed graph: 

MS = a r g  maxP(MCkl  ,MCk2 ,"" ,MC~ [MCkI--MC, I ,R,G) 
II 

-- arg max P ( MCk2 I MC,1 ) P ( MCk2 I R, Ski ) "'" 
II 

P (MC~ [MCk.,,-~ ) P (MC~ [R, Sk.,-1 ) 

= arg max lg [-P (MCk2 [MCs~ ) P (MCk2 I R, Ski ) "'" 
/ /  

P (MCu I MG, , - I  ) P (MC~ I R, S,,,-1 ) ] 

= a r g  mini--- (lg (P(MCk2 [MCsx )P(MCk2 ]R,Sk, ) ) + ' " +  
/ /  

1 g ( P (MCu [ MCk,.-1 ) P (MC~ I R,  Sk,n_l ) ) ) "7 

where MC, I is the designated initial motion cluster, G is the motion graph, 
P(MCkj IMC~) represents the connectivity from MCki to MCkj, P(MCkj JR, 
S~) represents the matching between MCkj and S~. The above problem 
cannot be transferred to find the shortest problem in a directed graph, 
which is different from Sect. 7 . 2 . 1 . 1 ,  because the new constructed direct- 
ed graph has infinite vertexes and no explicit end point. 

The constructed directed graph is shown in Fig. 7 .14,  where vertex V0 
is the initial motion cluster, and other vertexes are defined as: 

Vo = MC~ ( l ~ j  ~ NMc ) 

where NMC is the gross number of motion cluster, and V o is the j th vertex 
in the ith layer. The edge from vertex Vo to vertex gi+l,k s weight is 
- - lg  (P(MC~ [MCk,i-1 )P(MCk,i [R,Sk,~-i ) ) ,  in which MC~ and MCk,~-I are 
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Fig. 7.14 Directed graph with layers 

the corresponding mot ion clusters  to ver tex  gi+l,k and g 0. Sk,i-1 follows 

the path from ver tex  V0 to V o in path R. Since different  path will affect the 

value of Sk,i-1, the weight  of the edge connect ing two ver texes  is changing 

dynamically.  An extended Dijkstra a lgor i thm is designed by us to solve the 

above opt imizat ion problem. 

Let S be the set ,  which collects all the ver texes  in the shor tes t  path 

f rom ver tex  V0. Let Q be the set ,  which collects all the ver texes  in the cur- 

rent  shor tes t  path. The  a lgor i thm is as follows. 

(1) Initialization 

V0. d--0 

/ /  set the weight of the shortest path from V0 to this vertex 
Vo. mp--Get-Fi t tes t -MP (Vo ,R,Po ) 

//find the representative motion primitive of V0 that is 

//fittest to the path segment of R starting at P0 

/ /Po is the start location of R 

Vo. p -end=Reach-end  (Vo ,R,Po ) 

/ /  calculate the end location after the representative 

/ /mot ion  primitive in V0 has been adapted to R 

Q'--V0 
//add V0 to Q 

(2) While the end location of R has not been approximated enough 

Vc -- Extract-Min ( Q) 

//fetch a vertex with the minimal best estimation in Q as the current vertex 

$~--Vc 

//add Vc to S 

Remove(Vc ,Q) 

/ / remove V~ from Q 

for each vertex Vi in the next level to Vc 

Vi . pre--  V~ 

/ / s e t  Vc as the precedent of V/ 
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V,.d=Vc.d+(--lg (P(V, IVc)P(VilR, Vc. p-end)) 
//calculate the current shortest path weights from V0 to Vi 

V~. mp=Get-Fittest-MP (V~ ,R,V~. p_ end) 
/ /f ind the representative motion primitive in V~ 
/ / tha t  is fittest to the path segment of R starting at V~. p_ end 

Vi. p_end=Reach-end(Vi , R, V~. p_end) 
//calculate the end location after the shortest 
//path from V0 to Vi has been adapted to R 

if Vi 6 Q, 
Update the V~ in Q 

else 
Q~V, 

endif 
endfor 

endwhile 

P(Vi ]R, Vc. p_end)  represents the matching between Vi and the path 
in R from Vc. p_ end : 

P(Vi ]R,Vc. p_end) = max P (MP o ]R,V~. p_end) 
MP~ EV 

We adopt the minimum changing strategy to calculate P(MPo [R,V~. 
p_ end),  which is defined to coordinate the motion unit MPo. The specific 
coordinating algorithm is shown in the next section. Reach-end (V~ ,R,V~. 
p_ end) calculates the motion unit sequence from V0 to V~ and the specific 
algorithm is shown in the next section. Get-Fittest-MP (V~ ,R,Vc. p_ end) 
finds the optimal motion unit in vertex V~: 

Get-Fittest-MP (V~ ,R,Vc. p_end)=arg  max P (MP o [R,V~. p - end )  
MP~ E V, 

After the above algorithm finishes, the motion path can be explored 
by using reversing deduction: from the last vertex, join S to the initial ver- 
tex Vo, and transpose the extracted motion cluster sequence to get the mo- 
tion path. The optimal motion unit in each motion cluster is chosen to 
form the motion unit sequence. 

7 .2 .2 .6  . Connecting of Motion Unit Sequence and Path Fitting 

After getting the required motion unit sequence, these motion units are 
connected according to the path, so the required motion can be generated. 
Let M be the motion, which is formed by the motion units before MP~+~ 
according to path R, P$ is M ' s  end point. The algorithm is as follows. 
Step 1 
Step 2 
Step 3 

,~ .~  

The first frame in MP~+~ is chosen to be extended. 
Translate the current frame and let its Root be PS. 
Calculate path R in PS ' s  tangent,  and rotate current frame to be 
paralle ! with the tangent. If the current frame is the first frame in 
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MPi+I, it replaces the end frame in M,  otherwise the frame is add- 
ed into M to be the end frame. 

Step 4 If all the frames in MPi+I are managed completely, then it is the 
end; otherwise P$ are moved following R, and the moving dis- 
tance is the distance between the current frame and the last frame. 
The next frame will become the current frame and go to Step 2. 

In order to get the motion with natural transition, Gaussian convolution 
template is adopted to refine the results. 

I M(m-- Tb ) 
( rn--:Tb + 1 ) 

(m+Tb) 

: G(2T~+ 1) x (2T~ +1) 

IMMM ( m-- Tb ) ( rn--:Tb + 1 ) 

(m+Tb) 

MC1 

MC2 

MC3 

MC4 

1,5,9 

2,6,10 
, , , 

3;7,11 

4,8,12 

MQ 

MC6 

MC7 

MC8 

13,17,21 

14,18,22 

15,19,23 

16,20 

I go (o) go (1) ""  go (2Tb) -~ 
g~(--1) g~(0) ... g , (gTb--1) /  

G(2T~  + ~) x ( 2 ~  + ,  = �9 . : �9 / 
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where m is the frames connecting M and MPi+I, [m--Tu,  m+ Tu-] is the 
managing range in the new motion, and p ( t )  represents the standard 
Gaussian distribution. 

7 . 2 . 3  Results 

The motion library, including 270 frames of normal walk and 246 frames 
of Catwalk, is used to test the motion synthesizing algorithm introduced a- 
bove. Firstly 8 motion clusters are chosen by using greedy algorithm and 
each motion cluster is shown in Table 7.1. The connectivity between mo- 
tion clusters is shown in Table 7.2.  According to these data, a motion 
graph containing 8 vertexes can be constructed and each vertex represents 
a motion cluster. The weight in each edge eij represents the connectivity 
from cluster MQ to MC~. 

Table 7.1 Motion cluster 
. . . . . .  

Motion cluster ID Motion primitive ID Motion cluster ID Motion primitive ID 
J 
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MC1 

MC2 

MCa 

MC4 

MCa 

MC6 

MC7 

MC8 

Table 7.2 Connectivity between motion clusters 

MC1 MC2 MCa MC4 MC5 MC6 MC7 MC8 

0.15926 0.34525 0.15608 0.13728 0.11148 0.05440 0.03569 0.00054 

0.07274 0.19349 0.41504 0.11105 0.04602 0.00063 0.12664 0.03436 

0.17830 0.15790 0.11202 0134285 0.10163 0.00359 0.00048 0.10324 

0.31031 0.18492 0.11327 0.18556 0.13796 0.02318 0.00037 0.04444 

0.00048 0.12003 0.06427 0.03981 0.16930 0.37751 0.16918 0.05943 

0.00037 0.10271 0.14585 0.05132 0.11714 0.15330 0.31367 0.11566 

0.00062 0.05757 0.08013 0.14393 0.10421 0.04082 0.11969 0.45303 

0.09650 0.13167 0.00087 0.07141 0.50771 0.12940 0.04383 0.01861 

7.2.3.1 Random Motion Sampling 

Two key standards for crowd simulation are reality and characteristic. 
Each character 's  motion must be natural and all the characters ~ motions 
should be similar while having their own characteristics. In the motion 
synthesizing framework introduced above, the animator only needs to des- 

ignate an initial motion cluster and the crowd motion can be generated: the 

system explores an optimal motion path from the motion graph according 

to the designated initial motion cluster; then the random motion sampling 
strategy is adopted to choose a series of motion units from the motion 
path; at last the motion units are smoothed to be the requested motion. 

For example, MC1 is designated to be the initial motion cluster and the 

system can extract the motion path {MC1, MC2, MC3, MC4, MCI, MC2, 
MC3, MC4, MC~, MC2 } from motion graph. A series of motion can be cre- 

ated by using this motion path,  as shown in Fig. 7.15. 
The motion units in motion cluster have similar dynamic characteris- 

tics, however every motion has different unit sequence, and the motion is 

constructed from the MoCap data. The weakness is that the motion path 

always falls into a small range in the motion graph. In the above example, 

the motion path is constructed from {MC~, MCz, MC3, MC4} repeatedly. 

Fig. 7.15 Random motion sampling 
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This may reduce the 
underlying motion synthesis 
space. There are two reasons: 
the fixing period exists in the 
original motion, and the limi- 
tation exists in the connectivi- 
ty calculation method. For ex- 
ample, a walk motion contains 
four periods and each period 
has three different motion u- 
nits. According to the motion 
unit extraction algorithm, 
three motion clusters can be 
extracted and each cluster con- 

elj e2j 

el 2 = 
MC~ ) e21 

e31 ~ / / e 2 3  

MC3 ! e3j 

MC~ 

Fig. 7.16 Extracting motion clusters from 
tains four motion units as motion period 
shown in Fig. 7. 16. By using 

the connectivity calculating algorithm illustrated in Sect. 7 .2 .1 ,  it is possi- 
ble that e12 is larger than other edges from MC1; e23 is larger than other ed- 
ges from MC2 ; ea~ is larger than other edges from MC3. Thus,  if the three 
motion clusters shown in Fig. 7.16 are chosen into the motion path, this 
path will fall into a dead loops {MC1 ,MC2 ,MC3 }. 

A feasible solving method is to utilize a noise generator to motivate the 
motion path from the dead loop. This method will damage motion's  real- 
ity, since adding noises may induce the randomly choosing of motion clus- 
ter. An interactive approach is adopted to solve this problem, firstly the 
animator inserts a key motion cluster sequence in the initial motion path, 
and then the system adopts the algorithm elaborated in Sect. 7 . 2 . 1 . 1  to 
generate the motion cluster sequence between two neighboring MC. Thus, 
the dead loop can be broken and the motion reality can be guaranteed. For 
example, {MC8 ,MC3 } is inserted behind the original MC sequences {MC~, 

MC2 , MCa , MC4 , MC1 }, and {MC1, MC8 }, { MCs , MCa }, { MCa , MC2 } 
are extended to be { MCI,  MC2, MCT, MCs} ,  { MCs, MC2, MCa} and 
{MCa, MC2}, so the original MC sequence turns into {MC1, MC2, MCa, 
MC4, MC1, MC2, MCT, MCs, MC2, MCa, MC2, MC3, MC4, MC1, 
MC2 }. 

Obviously the new MC sequence is much longer than the original one 
and the animator can choose one segment to be the result. For example, 
ten motion clusters are chosen from this MC sequence, and a series of new 
motions can be created. Fig. 7.17 shows one of them. 

7.2.3.2 Motion Path Synthesizing 

According to the framework given above, we propose a motion path syn- 
thesizing algorithm to generate the motion along the programmed path. 
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Fig. 7.17 The generated motion after refining MC sequence, and the corresponding 
motion unit sequence is {1, 2, 7, 8, 5, 6, 19, 20, 2, 3} 

This algorithm has two steps, first a motion unit sequence is extracted 
from the motion graph, then the units are connected following the path. 

For example, when the user designates a round path, the system ex- 
tracts a motion sequence {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 3, 4, 
5, 6, 7, 4, 5, 6, 7, 8, 9,10} from the motion graph. A motion having 
915 frames is created, as shown in Fig. 7 .18(a) .  Similarly, a motion hav- 
ing 4:47 frames can be created and it moves along sine curve shown in Fig. 
7.18 (b).  The units forming this motion are {13, 14, 15, 16, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 9, 10, 11, 12}. 

From the above two examples, the new generated motion has more 
frames than the original motion library. Some motion units are used fre- 
quently in constructing new motion, so two motion units, which are not 
close, must have smooth t rans i t ion .  The motion synthesizing framework 
adopts two strategies to realize the  transition, first, the motion unit se- 
quence whose smooth transition is possibly realized is chosen~ second, a- 
dopt Gaussian convolution template to manage two neighboring motion u- 
nits. The experimental results show the effect of these strategies. 

This chapter introduces a motion synthesis framework and two tech- 
niques, random motion sampling and motion path synthesis. The main 

Fig. 7.18 Motion path synthesizing 
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contribution is to propose a novel motion graph concept, which is different 
from the previous work. It adopts motion clusters to be the vertexes but 
not single frame or the entire motion. By using this approach, the motion' 
s reality can be retained and the underlying motion space can be effectively 
enlarged. The characteristic ot? the new motion graph is to retain the origi- 
nal motion in the cluster. Another contribution is to propose new tech- 
niques in two challenging areas: one is the random motion sampling tech- 
nique in crowd animation; the other is motion path synthesis technique a- 
long the programmed path. 

7.3 Automatic Synthesis and Editing of Motion Styles 

Motion synthesis and editing methods are extensively studied in recent 
years and many wonderful results have been achieved, but the techniques 
for synthesis and editing of motion styles have been rarely explored. In 
this chapter we propose a framework {or automatic, real-time and quanti- 
tative synthesis and editing ot? human motion styles. In this framework, 
Principal Component Analysis (PCA) theory is used to map original styled 
human motions into subspaces, which can reduce computational complexi- 
ty while reserving the intrinsic properties of original data. Synthesis and 
editing methods are applied in such subspaces and then motions with new 
styles can be reconstructed. As realistic human motions may have multiple 
styles, we also present a novel methodto synthesize and edit motions with 
multiple styles. 

In computer animation research, synthesis and editing methods for mo- 
tion styles are very important: (1) in a large virtual environment, large 
numbers of characters with different motion styles are simultaneously nee- 
ded; (2) in animation production systems, the animator can only get mo- 
tions with desired styles by synthesizing or editing existing motion clips in 
MoCap database instead ot? capturing every motion directly~ (3) {or a mo- 
tion with an exaggerated style which cannot be performed by the actor, 
synthesis and editing methods for motion styles are also needed. 

But all of these are great challenges because motion data are tremendous 
and have high-dimensionality. For example, a motion with 30 frames and 
51 DOFs is represented as a vector with 1,530 dimensions, semantics of 
motion data is not obvious. Relationship between original motion data and 
high-level semantics is complex. Motion styles are very abstract and have 
higher-level semantics, so i t ' s  even more difficult to uncover the relation- 
ship between them. 

In order to overcome the computational complexity, data reduction 
method should be applied. Despite the data reduction, we reserved the in- 
trinsic properties o{ original data as much as possible. PCA ~16~ is such a 
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method. With PCA, a subspace can be constructed, which can be used to 
describe original data space approximately. In general, the dimension of 
PCA subspace is much smaller than that of original data space. 

Motion style is an abstract concept, so quantitative analysis of motion 
style is different from that of low-level motion data. For example, while a 
walking motion with a velocity of 6 km/h  has an explicit physical defini- 
tion, the definition of a walking motion with "happy" or "sad" style is in- 
distinct and subjective. Motion style is a subjective perception in human ' s  
mind, and the quantitative analysis of motion style is to make the process- 
ing more precise and the concept of styles more intuitive. For example, 
later we ' l l  use a number between 0.0 to 2.0 to describe the "catty" degree 
of a walking motion. We do not relate this number to any physical defini- 
tions; its meaning lies in that we ensure that the average value of this 
number for "catty" training samples is 1.0 and that for "natural" training 
samples is 0 .0 ,  and that in the same context, motion with larger "catty" 
value has more obvious catty style. For a motion with "catty" value of 0. 
3, it should lie between "natural" and "catty" samples and nearer to "natu- 
ral" in catty degree. Motion styles only have meanings in comparison. 

We aim to propose a framework for synthesis and editing of human mo- 
tion styles, by which users can automatically and quantitatively synthesize 
and edit motions with different styles in real-time. 

7 . 3 . 1  Motion Data Preprocessing 

Human body is modeled by an articulated skeleton with some rigid limbs, 
which is the same as the human model used in Sect. 7 . 1 . 1 .  The walking 
motions with different styles are used to illustrate our idea, including catty 
walk, large-arm-swing walk, rocky walk, high-step walk, stomp walk and 
titanic walk. Also a number of "natural" walking motions are needed as 
references, which have moderate step length, height, and normal arm 
swing, but no motion style component mentioned above. In our experi- 
ments,  an optical MoCap system is used to acquire human motion data. 

We divide these walking motions into 6 groups, group 1 is "natural" 
walk and groups 2 to 6 correspond to catty walk, large-arm-swing walk, 
rocky walk. Two steps are adopted to preprocess the motion data. 
Step 1 Extract a complete motion cycle from every motion clip and em- 

ploy a time-warping method to scale the cycles to the same frame 
number. 

Step 2 Filter out the translation and rotation of the root joint, which 
present the overall position of skeleton and have no relations with 
motion style. 

After preprocessing, all training motion samples have the same frame 
number and DO Fs correspond to a group of vectors in the same original da- 
ta space. For testing motion samples, the same preprocessing is applied. 
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7 . 3 . 2  Motion Synthesis and Editing Algorithm for Single Style Com- 
ponent 

7.3.2.1 PCA Subspace and Motion Style Vector 

The style component "catty" is used for illustration. First we construct a 
PCA space based on a group of natural walk and a group of catty walk, 
and compute the points o{ these samples in the subspace. Let an and ac be 
the center o{ the natural samples and catty samples respectively, then the 
vector a c -  an is the direction that controls or affects motions '  catty de- 
gree. Along the positive direction o{ this vector, the catty degree increa- 
ses, and vice versa. In this way, we essentially find a relation between the 
motion data and catty degree, which is semantic. This is the base o{ the 
following algorithms. 

Below we call the vectors, such as ac--an,  style (controlling) vectors in 
the PCA space. 

7.3.2.2 Motion Synthesis Algorithm for Single Style Component 

This algorithm is for automatically synthesizing a walking motion given a 
certain catty degree. First we quantify the catty degree. The mean o{ catty 
degrees o{ the catty training samples is 1 .0,  and the same quantum o{ the 
natural samples is 0.0. Some extent of extrapolation is allowed (see Fig. 
7 .19 (a ) ) .  

The following is a formal description of the algorithm. In this descrip- 
tion, c is the expected catty degree o{ the synthesized motion, S is the 
PCA space, ac is the center of catty samples in the PCA space, and an is 

the center of natural samples in the PCA space. 

Fig. 7.19 (a) Motion synthesis algorithm for single style component. This figure il- 
lustrates the algorithm when the expected catty degree is 1.3; (b) Motion 
editing algorithm for single style component. This figure illustrates the case 
when the expected catty degree is 1.5 
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Algorithm 1 Motion Synthesis Algorithm for Single Style Component 

begin initialize c, S, a., ac 
a ~ - a .  +cX (ac-a.) 
reconstruct the motion from a and return it 

end 

7.3.2.3 Motion Editing Algorithm for Single Style Component 

This algorithm is for automatically editing an existing walking motion to a 
, ,  

certain catty degree. The quantification and assumptions are the same as 
Algorithm i. The following is a formal description, in which 0 is an exist- 
ing walking cycle, c is the expected catty degree of the edited motion, S is 
the PCA space, ac is the center of catty samples in the PCA space, and a n 

is the center of natural samples in the PCA space (see Fig. 7 . 1 9 ( b ) ) .  

Algorithm 2 Motion Editing Algorithm for Single Style Component 

begin initialize 0, c, S, a., ac 
project 0 into S and get its coordinate point in PCA space as a0 
Co ~-- ( a o - - a . )  �9 ( a c - - a . )  / II a ~ - - a .  II ~ 
a ~- a.-+-(C--Co) X (a~--a~) 
reconstruct the motion from a and return it 

end 

7 . 3 . 3  Motion Synthesis and Editing Algorithm for Multiple Style 
Components 

Here we present a novel approach to synthesize and edit motions based on 
multiple styles. We take the style with two components " c a t t y "  and 
"large-arm-swing" as example. Consider a motion style description vector 
M S  .= [ c a t t y ,  l a r g e - a r m - s w i n g ] ,  in which the two components represent 
the two style aspects. We develop algorithms based on this style descrip- 
tion vector. 

Things would be easier if different style components were orthogonal. 
In that case, all we need to do is happily divide an n-dimensional style 
problem into n single style problems and Algorithms 1 and 2 will do all the 
rest. In practice, this premise is rarely true. For example, if we synthe- 
size a walking motion with catty degree 1.0 by Algorithm 1 and then edit 
this motion by Algorithm 2 to large-arm-swing degree 1. 0, we w o n ' t  
probably get a final motion with M S =  [1 .0 ,  1 .0 ] ,  because the modifica- 
tion made by Algorithm 2 aiming at large-arm-swing style component also 
has effects on catty component. Therefore,  we should consider different 
style components associatively rather than separately. 

In the algorithms presented below, we assume that a PCA space S has 
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been constructed based on all the training samples of natural,  catty and 
large-arm-swing, and that an, ac and al are the center of natural,  catty and 
large_arm-swing samples in the PCA space, respectively. 

7.3.3.1 Motion Synthesis Algorithm for Multiple Style Components 

This algorithm is for automatically synthesizing a walking motion given a 
style description vector M S  = [c ,  l] .  Formally, we want to find such a 
point in PCA space that when projected to a t - - an ,  it has a catty degree c 
and when projected to a l -  an, it has a large-arm-swing degree l. Direct 
computation is possible. We first find t w o  v e c t o r s  a t - - a n  and a l - - a n ,  and 
then find the two hyper planes perpendicular to these two vectors, at last 
the intersection of these two hyper planes are the points that satisfy the 
formal requirement. There are two problems with this direct computation. 
First ,  in a space with dimension larger than 2, the intersection of the two 
hyper planes, if exists, consists of indefinite number of points (see in Fig. 
7 . 2 0 ( a ) ) ,  and even worse, we can hardly expect that a point far away 
from all the sample centers (such as P ) ,  after re-constructed to high-di- 
mensional motions, still represents a valid walking motion. In experiments 
we did prove that these faraway points, when restored to motions, are 
nothing but  messes. Our algorithm should be able to overcome this prob- 
lem and then find one point in the space that not only satisfies the mathe- 
matical requirements but is also a representative walking motion, or rath- 
er, not too far from the training samples'  centers (such as Q in Fig. 7.20 
(a)) .  The second problem with the direct computation is that usually the 
computational complexity will be enlarged remarkably when the space ' s  
dimension increases. 

Now we present our algorithms and show how our algorithms address 
the above two problems. 

large-arm-swing center o'" 
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Fig. 7.20 (a) The non-singularity of the problem when the PCA subspace is three-di- 
mensional and when the expected style description vector is [-0.5, 0.5]; 
(b) The iterations when the angle between two style controlling vectors is 
close to 180 ~ 
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Algorithm 3 Motion Synthesis Algorithm f o r  Multiple Styles 

begin initialize c, l, S, an, ac, al, threshold e and e' 
t? ~-- the angle between a c -  an and a l -  an 

if abs(fl-- 180 ~ de '  
print ("No solutions can be found. ") 

return; 
end 

a *- cX (ac--an) 
while (1) 

c' * -  ( a - a n )  �9 ( a c - a n )  / II  a ~ - a n  II ~ 

l' * -  ( a - a n )  �9 ( a , - a o )  / II  a , - a n  II ~ 
if abs(c-- c') d e  and abs(l-- l') d e  

break; 
end; 
if (c--c') ~ e  

a*-a+(c--c ' )  X (ac--an) 
continue; 

end 
if ( l - - l ' )  >e 

m 

a~-a+(l--l') X ( a l - - a n )  

end 
end 
reconstruct the motion from a and return it 

end 

Our algorithm takes an asymptotical  approach. We want the algori thm 
to be well converging. Here a problem must  be addressed. Mathematical-  

ly, unless the two vectors a c - - a n  and al--an are exactly parallel,  the algo- 
r i thm will be converging. Here we consider the situation where the two 
vectors are not strictly parallel but have an angle close to 180 ~ In th&t 
case, the algorithm will stop, but only after many i terat ions,  and the 

worst  thing is that the motion returned will be very far from all the three 
groups of training samples,  yielding a disordered motion (Fig. 7 .20 (b)  is 
an example).  In Fig. 7 . 2 0 ( b ) ,  the two arrows are the two style control- 
ling vectors in subspace. Point P is the point that meets the formal re- 

quirements. Asymptot ical ly ,  the algorithm finds P0, P I , " "  and finally it 

returns a point near P. But P is so faraway from all the samples that  prob- 

ably it only represents a mess instead of a walking motion. To overcome 

this problem, we simply add a decision at the beginning of our algorithm. 
If the angle between the two vectors is close to 180 ~ we say that  no appro- 
priate motion can be synthesized to satisfy the requirement. This is rea- 
sonable, since if the two vectors are nearly opposite,  we can infer that the 
two corresponding style components have obvious opposite meaning. For 
example,  for a walking motion,  " ca t t y "  implies smaller transverse step 
width and larger lengthways step length,  while "rocky" implies larger step 
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width and smaller step length. These two style components have obvious 
opposite meanings so the style vectors in the P C A  space corresponding to 
them will probably be opposite. 

If the two style vectors in the space are not nearly opposite,  our algo- 

r i thm will stop after only a few iterations and return a motion. Note that  

since the algorithm initializes the motion to be a point along the first style 

controlling vector that  is not far from the samples and the algorithm stops 

after only several i terations,  the returned motion is not very far from the 

samples and therefore disorder is avoided. 

7.3.3.2 Motion Editing for Multiple Style Component Algorithm 

The editing algorithm for multiple styles is very similar to the synthesis al- 
gorithm. The only difference lies in the initialization. The following is a 
formal description, in which 0 is the existing motion that  we want to edit. 

Algorithm 4 Motion Editing Algorithm fo r  Multiple Styles 

begin initialize 0, c, l, S, an ,  ac ,  al, threshold ~ and e' 
/3 ~-- the angle between a c -  an and a l -  an 
if abs(t3-- 180 ~ %~' 

m 

print ("No solutions can be found. ") 
return; 
end 

project 0 into S and get its coordinate point in PCA space as a 
while (1) 

c' ~-- ( a - - a n )  �9 ( a c - - a . )  / I[ a c - - a .  II 2 

l' ~- ( a - - a . )  �9 (al--an) /II a l - - a n  II ~ 
if abs(c--c') ~e  and abs(l-- l ' )~e 

break; 
end~ 
if (c--c') >s 

a~--a+(c--c') • (at--an) 
continue; 

end 
if ( l - - l ' )>r  

a ~ - - - a + ( l - - l ' )  • (al--an) 
end 

end 
reconstruct the motion from a and return it 
end 

7 . 3 . 4  Results  and Discuss ions  

In order to show the power o{ our algori thm, we now present some experi- 
ments.  The training samples are derived as follows. For each style compo- 

nent ,  we acquire 5 samples,  so totally we capture 35 motion clips (30 clips 
for the six style components and 5 clips for the "natural  walk") .  All clips 
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are acted by the same subject. Data preprocessing is conducted as de- 
scribed in Sect. 7 . 3 . 1 ,  in which all clips are time-warped to 30 frames. 

The skeleton we use has 51 DOFs including the root joint. Therefore,  af- 

ter preprocessing, each training clip is a 1,350-dimensional vedtor in the o- 
riginal data space. All the experiments are implemented in Matlab on a PC 
with a PentiumIV 2.4 GHz CPU and 512 MB RAM. 

When we get results from algorithms, inverse kinematics methods are 
applied to eliminate the artifacts such as feet sliding E177. 

7.3.4.1 Motion Synthesis and Editing for Single Style Component 

We test Algorithm 1 for each of the six style components. Usually 2 or 3 
eigenvectors are required. For each test ,  the training phase takes about 30 
s and it takes less then 0.5 ms to synthesize motion. Fig. 7.21 shows the 
results for style components "catty" and "stomp".  

For Algorithm 2, it takes less than 0.5 ms to edit an existing motion to 

a style degree designated by the user. Fig. 7.22 shows the results on single 
style components "catty" and "rocky". 

Fig. 7.21 Algorithm 1 on single style component. (a) "catty"; (b) "stomp". The 
two motions on the first column are training samples randomly selected 
from the natural samples and catty samples for comparison. The eight mo- 
tions on the right are synthesized by the algorithm 

7.3.4.2 Motion Synthesis and Editing for Multiple Style Components 

In order to testify Algorithm :3, we do some experiments on double style 
components. Usually 3 or 4 eigenvectors are preserved. It takes 30 s in the 
training stage. The synthesis process can be interactive. Typically it takes 
about 0.5 to 2.0 ms to synthesize a motion, depending on the number of 
iterations the algorithm executes. Fig. 7.23 shows the result and compari- 
son in the case of style [catty, large-arm-swing]. 

In Fig. 7 .23(a)  every motion is showed by two representative frames in 
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Fig. 7.22 Algorithm 2 on single style component. (a) "catty". The first motion on 
the left is an existing motion to be edited. Note that it is already somewhat 
catty. The four motions on the right are returned by our algorithm for dif- 
ferent catty degree designated by the user; (b) "rocky" 

Fig. 7.23 Algorithm 3 on style. (a) [catty, large-arm-swing]. Note that how our 
algorithm decouples the effects of the two style components while they are 
not orthogonal~ (b) The result of simply dividing the problem into two 
separate single style problems 

one column. The first three motions on the left are randomly selected from 
natural,  catty and large-arm-swing samples for comparison. The five mo- 
tions on the right are synthesized by the algorithm, with style description 
vector [-0.0, 0.0-], [-0.5, 0.5-], [ 0 . 5 ,  1 . 0 ] , [ 1 . 0 ,  0 .5]  and [1 .0 ,  1.0] .  
The views of motions on the first and second row give good ways for jud- 
ging the catty degree and large-arm-swing degree, respectively. Note that 
the algorithm decouples the effects of the two style components and keeps 
the style description vector well quantified. This can be easily seen by 

some comparisons. For example, compare the motion with style descrip- 
tion vector [ 0 . 5 ,  0 .5]  with that with [ 0 . 5 ,  1 .0] .  The two motions indeed 
have different "large-arm-swing" degree and mostly the same "cat ty" de- 

gree. Several similar comparisons can be made, convincing us that our al- 
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gorithm successfully decouples the effects o{ the two style components, al- 
though they are not orthogonal. In the PCA space of this case, the angle 
between two styles ~ controlling vectors is about 35 ~ 

Fig. 7 .23(b)  compares our algorithm with the method of simply divid- 
ing the problem into two separate single style problems. From left to 
right, the first three motions are selected from natural, catty and large- 
arm-swing samples for comparison. The fourth motion is returned by Al- 
gorithm 3 for [catty, large-arm-swing-] = [-1.0, 1.0-]. The last motion is 
derived simply by first synthesizing a motion with catty degree 1.0 using 
Algorithm 1 and then editing the returned motion to large-arm-swing de- 
gree 1.0 using Algorithm 2. Note that the motion returned by Algorithm 3 
keeps the style quantified very well. The catty degree and large-arm-swing 
degree are the same as those o{ the catty sample and large-arm-swing sam- 
ple, respectively. On the contrary, the last motion has poor style mean- 
ing. Its arm-swing degree is too large and its catty degree is insufficient. 
This is caused by the non-orthogonality of the two style components. 
When doing Algorithm 1 and Algorithm 2 separately, they cannot consider 
for each other so there are some severe side effects. 

The editing process can be interactive. Typically it takes about 0.5 to 
2.0 ms to edit a motion, depending on the number o{ iterations the algo- 
rithm executes. Fig. 7.24 shows the result in the case of style [high-step, 
large-arm-swingS. Every motion is showed by two frames in a column. 
The first motion on the left is the original motion and the four motions on 
the right are the ones returned by Algorithm 4 for style description vectors 
[-0.5, 0.5~, [-0.5, 1.0-],[-1.0, 0.5-] and ~1.0, 1.0~ designated by the us- 
er. The views o{ motions in the first and second rows give good ways for 
judging the high-step degree and large-arm-swing degree, respectively. 
Note that the original motion has a large high-step degree and a very small 
large-arm-swing degree. The [-0.5, 0.5-] motion returned by the algorithm 
has the high-step degree mitigated and large-arm-swing degree strength- 
ened. From [-0.5, 0.5 ] to E0.5, 1.0-], the large-arm-swing degree rises 
while the high-step degree remains. Similar observations can be made with 
other motions, which convince us that as in Algorithm 3, Algorithm 4 
keeps the style description vector meaningful. 

In this section we propose a framework for synthesis and editing hu- 
man 's  walking motions on styles. We develop algorithms based on Princi- 
pal Component Analysis (PCA).  Using PCA, we reduce the data~s di- 

Fig. 7.24 Algorithm 4 on style I-high-step, large-arm-swing-] 
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mension with a little information loss that is insignificant. The dimension- 
ality reduction precludes large computational complexity. Usually it takes 
no more than one or two milliseconds to synthesize or edit a motion, so our 
algorithms can be employed for user-interactive systems, or large virtual 
environments in which large number of characters are required to be depic- 
ted quickly. We also extend our algorithms to the case when multi-dimen- 
sional motion style is required, which is of great use in practice. We illus- 
trate the multidimensional-style algorithms with Algorithms 3 and 4 as ex- 
amples, and the same idea can be extended to the cases with higher dimen- 
sional styles. We elaborate our whole framework with walking motions as 
examples, and this idea serves as well for other class of human motions 
such as running or jumping. And many motion style engines with different 
styles can be created by our method and embedded into animation system 
to synthesize and edit varied motion styles. 
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Intelligent Techniques for Character Animation 

Motion capture based animation has become one of the most promising are- 
as in computer animation. But the motion capture equipment is expensive. 
To be able to reuse the data and make new movements, we need to modify 
or edit the motion capture data before retargeting it to animated charac- 
ters. 

Recently, extensive study has been done on these issues, which basical- 
ly consists of three motion-editing techniques. (1) Movement curve fitting 
and control point adjusting method Eli. This method is not suitable when 
the movement is big. (2) Data signal processing Ez,3]. This method pro- 
motes the reuse of existing data, for example, motion warping presented 
by Witkin and Popvic E4] uses blending and overlapping algorithms to gen- 
erate new motion based on existing motions. Bruderlin and Williams Es] re- 
garded motion as signal. Signal-processing techniques such as multi-reso- 
lution filter, time warping, multi-target motion interpolation, motion 
wave-shaping and motion displacement mapping are used to regenerate mo- 
tions based on captured motion data. (3) Spatio-temporal constraint meth- 
od [6,7], is suitable for generating interactive motion. It generates con- 
strained movements by solving objective movement equations E6,8,9]. Using 
this method, Popvic and Witkin E~0] transformed captured motions into new 
motions that preserve the original properties of motion and satisfy users ~ 
specifications by solving dynamic equations. Rose, et al. Ell] managed to 
generate the transition o{ two clips of motion. Lee and Shin ElZ] generated 
constrained motions using curve fitting and inverse kinematics. But each 
instance requires its unique equations and solutions, and it is hard to gen- 
eralize. 

The above-mentioned methods have largely solved the problem of data 
reuse and motion regeneration. The problem is that they can only handle 
one character, while in reality, multiple animated characters move slmul- 
taneously in one scene. The spatio-temporal constraint, imposed by the 
virtual environment and other characters, also changes constantly. Be- 
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cause the original motion is captured in a structural environment, be{ore 
the data is retargeted to animated characters in a complex non-structural 
environment, motion editing is always needed. We think it is important to 
enable the automatic perception of virtual scenes and the collaborative 
work of multi-characters. 

In Sect. 8 .1 ,  we present the idea of motion fusion of multiple animated 
characters and the approaches to fuse multiple motions into one non-struc- 
tured virtual scene by improving the perception and self-decision-making a- 
bilities of characters. Our basic idea is as follows. Firstly,  motion deci- 
sion-making and motion collaboration are applied to perceive the virtual en- 
vironment and other moving characters automatically. Secondly, a Definite 
State Machine (DSM),  dealing with motion mode and spatio-temporal con- 
straints imposed by the ambient scene and other moving characters, is uti- 
lized to select a suitable motion mode for each character intelligently. Fi- 
nally, for each character, available spatio-temporal constraints can be ap- 
plied to solve continuous movement based on constraints imposed by other 
characters, ambient virtual scene and animators. Different from available 
spatio-temporal constraints, our methods automatically perceive the spa- 
tio-temporal constraints and improve the perception and decision-making of 
each animated character. 

In Sect. 8 .2 ,  we propose a framework of script engine for realistic char- 
acter animation based on Motion Capture (MoCap) database. Our script 
engine produces realistic human animation in either offline mode or online 
mode. In of{line mode, users make motion scripts, describing the motion 
properties, such as type, order, and details, by a common text editor or a 
graphical user interface provided by our system. Then the scripts are de- 
composed into sequential commands for retrieving relevant motion clips 
from a MoCap database and generating final animation sequence. In online 
mode, users employ keyboard, mouse or other peripheral input equip- 
ments to activate motion commands and obtain synthesized movement se- 
quence in real-time. Furthermore,  users can define their own motion ele- 
ments table and scripts format suitable for various MoCap datasets. In ex- 
periments,  we built two applications based on this script engine and veri- 
fied their capability on twodifferent  MoCap datasets respectively. The ex- 
perimental results show that this script engine framework can produce ro- 
bust results and be used as a human motion engine in various applications, 
such as computer games, movies, sports simulation and virtual reality. 

In Sect. 8. 3, we propose a framework to program the movements of 
characters and generate navigation animations in virtual environment. Giv- 
en a virtual environment, a visual user interface is provided for animators 
to interactively generate motion scripts, describing the characters ~ move- 
ments in this scene and finally used to retrieve motion clips from MoCap 
database and generate navigation animations automatically. This frame- 
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work also provides flexible mechanism for animators to get varied resulting 
animations by configurable table of motion bias coefficients and interactive 
visual user interface. This method is more alike to make a program in a visual 
development environment, and therefore named "motion programming". 

8 .1  Multiple Animated Characters Motion Fusion 

8 . 1 . 1  Architecture of Multiple Animated Characters Motion Fusion 

We assume that human movement is a four-layer thinking-and-moving 
process. The process of animated characters movement is analogous to hu- 
man movement, as shown in Table 8.1. Motion decision-making, motion 
collaboration, motion solving and motion execution are directly next to im- 
plement motion planning, collaboration, solving and displaying. Based on 
the analogy between human movement and animated character movement 
analyzed above, the general architecture of multi-character motion fusion is 
conceived as consisting of four parts as illustrated in Fig. 8.1. 

Motion decision-making layer First, modeling virtual scenes and writ- 
ing the scripts of producing animation, then planning multiple animated 
characters' paths in non-structured virtual scenes and breaking these paths 
into single character's path. 

Motion collaboration layer Realizing the character-to-character collabo- 
ration and character-to-environment collaboration by settling two basic 
problems: decision-making of discrete motion mode, and generating spa- 
tio-ternporal constraints imposed by virtual scenes and other characters. 

Motion-solving layer First, transforming the captured motion and ob- 
taining the approximate pose at each instance for each character, then re- 
solving the continuous motion of every discrete motion mode. 

Table 8 .1  The  analogy of human movement  and animated characters  movement  

Layer Motion of human Motion of animated character 

Motion decision-making 

Motion collaboration 

Motion solving 

Motion execution 

The path and behaviour are 

decided by the brain 

Breaking motion decision into 

units, and collaborate with 

ambient scenes 

The specific pose at one time 
instant is solved 

Each part of human executes 
the solved motion 

Animator plans the routine 

and process of animated char- 

acter movement 

Computer collaborates the re- 

lation among characters and 

environment, and achieves 

the discrete motion strategy in 

each part of the path 

Computer solves the continu- 
ous movement of each anima- 

ted character 

Motion data drive the anima- ~ 

ted characters to move 
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Decision-making 

~> Virtual scenes modeling 
and script planning 

Multi-character path 
plarming 

S ingle character path 
plarming 

Collaboration 
Character-to-character collaboration and character-to- 

environment collaboration 

Motion 
Solving 

(1) Discrete motion decision-making 
(2) Generation spatio-temporal constraints 

I 
1" Mo;ion"'] Video 
i' capture i-- 

Motion transformation ( 

Generating continoous 
movement 

Motion 
~- filter 

Motion 
Execution Retargeting motion to animated characters 

Animation 

Fig. 8.1 General architecture for motion fusion 

Motion  execution layer Retargeting the regenerated continuous move- 
ment to different animated characters in a complex non-structured environ- 
ment ,  and producing one clip of vivid animation of multiple animated char- 
acters moving collaboratively and simultaneously. 

In the study of fusing multi-characters motions,  there are two main 
challenges: (1)  the animated characters '  ability of self-determination to 
select the optimum path in non-structured virtual environment is limited; 
(2) the decision-making strategy of the discrete motion mode of each ani- 
mated character and the solving of continuous movement along a specific 
path are difficult to implement. Discrete motion mode means the preferen- 
tial motion mode, such as walking,  running and jumping,  selected by one 
character moving on a specific path,  while continuous movement means a 
sequence of poses for one character moving on a specific path in a period of 
time. Here we apply the idea presented by Kalisiak to path planning for 
multiple characters. A more thorough introduction can be found in [-13-]. 
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In the later discussion, we will give the idea and approaches to fuse multi- 
ple animated characters ~ motion into one scene and show the experimental 
results. 

8 . 1 . 2  Collaboration of Multiple Animated Characters 

When we fuse multiple motions into one scene at the same time, various 
characters should collaborate with each other in thought and action, and 
work without collision. On the other hand, a complex virtual environment 
always imposes various constraints on the characters~ thus each character 
must also collaborate with the virtual environment. As a rule, in motion 
fusion of multiple animated characters, collaboration includes character-to- 
character collaboration and character-to-environment collaboration. In the 
study of motion fusion, the key issues relating to motion fusion are motion 
collision detection and avoidance, motion mode selection for each character 
moving on the specific paths, analysis and specification on spatio-temporal 
constraints imposed by virtual environment and other characters moving in 
the same scene, and so on. 

8.1 .2 .1  Collaboration between Characters and Virtual Environment 

Nowadays, most commercial software devoted to computer animation and 
games runs in a structured virtual environment. When augmenting the viv- 
idness and diversity of the virtual environment, we need to make a further 
study of the effects on character movement resulting from the diversity and 
complexity of the virtual scene as well as the bumpiness and stoehasticity 
of planned paths. 

Generally, there are several steps in the collaboration between animated 
characters and the virtual environment. First ,  spatio-temporal constraints 
imposed by the environment are analyzed and specified. Second, by taking 
the spatio-temporal constraints as input, a DSM is applied to deduce the 
motion mode of animated characters satisfying the spatio-temporal con- 
straints. Some of the constraints imposed by the virtual scene are specified 
through a human-computer interface~ others are detected and specified by 
our system automatically. 

8.1.2.2 Collaboration among Characters 

Collaboration in Action 

Collaboration in action consists of active collaboration and passive collabo- 
ration. Active collaboration means that various animated characters, like 
autonomous agents, readily react to the ambient environment and other 
characters. For example, if one character (A)  finds another one (B) at 
time instant t, A will make a self-decision of whether to shake hands with 
B or not. Passive collaboration means that the animator specifies the action 
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of animated characters in advance in order to accomplish one assigned task. 
For example, the animator specifies that two characters accomplish hand- 
shaking in a specific position at time instant t. In essence, the collabora- 
tion between animated character and environment can be regarded as the 
collaboration between active character and immobile character. Thus we 
can apply a DSM to deduce the mode of motion in a specific path, and then 
solve continuous movement by spatio-temporal constraint approaches and 
the numerical optimum m e t h o d .  

Collaboration in Locomotion 

Except for the action collaboration among multiple animated characters, 
multi-character motion fusion should guarantee the collaboration of various 
characters in motion. As an example, let us consider the situation of two 
characters moving on the same path, where they may collide with each 
other; or the situation of passing through a bridge which actually only al- 
lows one person through at a time. This bridge is regarded as an exclusive 
resource in a computer technology. If two characters want to grab an ex- 
clusive resource synchronously, a deadlock will occur. Therefore,  before 
solving continuous movement for each animated character, we need to de- 
tect the probability of collision of various characters and deadlock resulting 
from grabbing exclusive resources. 

Collision among multiple animated characters As a rule, any two rigid 
human bodies should not penetrate each other. To avoid collision before 
deadlock occurs, motion simulation is applied to detect collision. Once col- 
lision has been detected, motion mode will be updated to avoid collision ac- 
cordingly. 

Most of the presented approaches to detect collision are reasonable but 
complicated to implement. In motion fusion of multiple animated charac- 
ters,  we assume that collision takes place when the Euclidean distance be- 
tween character m and character n is less than a maximal threshold d ~ , ,  
when 11 qm (t)--q~ (t) II . . . .  Then,  we calculate the distance between 
one joint in one character and a triangular mesh composed of joints in the 
other character, and detect the point of intersection. If the point of inter- 
section is found, it means that collision will occur in the process of move- 
ment; otherwise, two characters will work smoothly. Based on the knowl- 
edge of physiology, the maximal threshold can be regarded as approxi- 
mately half of the height of the human model. 

Once collision has been detected, there are different strategies to avoid 
it. (1) maintain the former speed, update the direction of movement; (2) 
maintain the former direction, update the relative speed to other charac- 
ters; (3) change both the speed and direction. 

Management of exclusive resources The commonly used approach to 
control exclusive resources is by using tokens. But this cannot guarantee 
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efficiency, and therefore does not fit for managing non-exclusive re- 
sources. In a collaborative virtual environment, different characters have 
different authentication to apply to and operate on an exclusive resource. 
Therefore this approach cannot distribute an exclusive resource equally. In 
order to overcome the shortcomings of approaches using tokens in a multi- 
ple animated characters motion fusion, we apply a two-layer management 
strategy to control share of exclusive resources during characters ~ move- 
ments: (1) detect all exclusive resources in the virtual environment, and 
then detect the characters using exclusive resource~ ( 2 ) b a s e d  on the de- 
tected results,  we control concurrently the characters ~ movement using 
preference. 

8.1.2.3 Discrete Motion Decision-Making 

In the character-to-character collaboration and character-to-environment 
collaboration, a character~ s movement is constrained by the ambient 
scene. From the viewpoint of vividness and naturalness, in certain phases 
of the path, different reasonable motion modes should be selected. There- 
fore, depending upon the constraints imposed by other characters and the 
virtual environment, preferential motion modes suitable for specific phases 
of the path, such as walking, running, climbing and jumping, should be 
selected before solving continuous movement. 

The discussions above are mainly to perceive the spatio-temporal con- 
straints imposed by the ambient virtual environment and other moving 
characters. In the later discussion, we need to make reasonable decisions 
based on these constraints in order to help the virtual characters to select 
preferable motion modes. In fusing motions of multiple virtual characters, 
a DSM is introduced to make intelligent decisions regarding motion modes 
'for the virtual characters. Creating a database of constraints and a database 
of characters ~ behavior is essential for intelligent decision-making. The da- 
tabase of constraints covers the constraints imposed by the ambient virtual 
scene, such as barrier, tunnel and threshold, and the constraints imposed 
by other moving virtual characters, such as shaking hands, nodding, stoo- 
ping down and standing aside. The database of behavior covers all possible 
motion modes in the non-structured virtual environment. 

To select a preferential motion mode from various types of motions, a 
DSM is introduced to solve discrete motion. We introduce DSM not only as 
a method to select the motion mode, but also as a breakthrough in tradi- 
tional computer animation directed by an animator. By using a DSM, we 
implement an active collaboration methodology in computer animation, 
which enables characters to perceive the ambient environment, to make 
self-decisions of action and movement according to the constraints imposed 
by the ambient scene and other characters. 

A DSM for selecting the motion mode can be depicted as a set (Q,Y,,~) 
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composed of triple elements. Q is a definite set of states in which each ele- 
ment is one type of motion mode, ,S is a finite set of inputs in which each 
element is a spatio-temporal constraint imposed by other characters or vir- 
tual scene, d: Q XE--~Q is the conversion function of states, which means 
that when character is in state q0 (q0 E Q),  if the constraint co (co E Y.) is in- 
put, the DSM will output a definite state ql (ql E Q). 

An example of DSM as sho~vn in Fig. 8.2 is used to explain how it reali- 
zes discrete motion decision-making. Let the motion mode be Q =  {skip- 
ping, walking, running, nodding, spanning, handshaking}. If the motion 
mode for one character is q=walking,  spatio-temporal constraints imposed 
by the virtual environment and other characters are c o n ,  satisfying c o n  E 

~,~ --" {ao ,ax  , a z  ,a3 ,a4 ,as } . The mode ql ~ QZ - .  { skipping, running, nod- 
ding, spanning, handshaking} will be selected. For example, if c o n  is 
meeting people, the motion mode of character will be changed to hand- 
shaking. When c o n  encounters a trap, the motion mode of character will 
be changed to spanning. 

Fig. 8.2 An example of DSM 

8. I. 3 Solving Continuous Motions 

8.1.3.1 Approximating Continuous Motions 

To enable animated character moving on the planned path in a virtual envi- 
ronment which differs from the realistic one, we transform the captured 
motion to make the character pass the planned path first and get the ap- 
proximate pose at each instance for each character moving in the new 
scene, which simplifies the process of solving continuous movement of 
each character. We use Euclid angle and translation vector to represent the 
movement sequences of the animated character. The original motion is 
then transformed in order to cover the planned path using cycle extension 
and displacement ' mapping. 
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Human Model 

The human model adopted in the video-based motion capture system devel- 
oped by our lab is different from the markers and special reflective objects 
adopted in Fua, et al. E14], which are costly and inconvenient. We have de- 
signed a suit of tight clothing. At each joint of the tight clothing there is a 
block with a unique color. Compared with special markers or sensors ap- 
pended to the body, it has several advantages. (1) it is inexpensive, easy 
to implement and convenient to track~ (2)  it is free from constrained 
movement. Based on the tight clothing, we have defined the corresponding 
human body as a set of rigid body parts connected by joints, and human 
motion as the movement of the human skeleton. Fig. 8 .3 is the adopted 
skeleton model, which consists of 16 joint points. Our target of motion 
capture is to extract the 3D human body movement sequences of each color 
block's  center on the tight clothing. 

Fig. 8.3 Human model 

Motion Sequence 

Depending on motion capture data and regarding human motion as rigid 
body movement, we can represent the motion sequence Q(t) as. 

Q(t)--(q(t),po(t),'" ,pn(t))--(q(t),p(t)) (8-1) 

where q(t) is the translation vector of point Root (as seen in Fig. 8.3)  at 
time t, and pi( t)  is the rotation angle of joint i at time t. 

Cycle Extension 

The frame number of captured motion may be too small to be used directly 
in an animated character of a new environment~ therefore, cycle extension 
should be used to extend the cycles of motion. If the movement sequence 
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of original motion in cycle T is Q(t )~Q( t+ T),  the orientation to extend 
will be (p ( t+T)- -p( t ) ) / I I  p(t-+-T)--p(t) II. The corresponding move- 
ment of n cycles will be depicted a s :  

Q' (t) = Q ( t )  �9 (n(q(t+ T) --q(t) ), (p(t-$- T) --p(t) ) / 

[I p(t-+-T)--p(t)  II (8-2) 

Displacement Mappin8 

Since the start point and direction of movement of different paths are dif- 
ferent from the original motion, displacement mapping should be applied 
to transform the original motion. Let original motion be Q( t )  and trans- 
formed motion be Q'( t )  after applying displacement mapping to Q(t). Let 
the displacement vector from Q(t) toQf(t) be (U(t) ,V(t)) .  U(T) and V 
(t) are translation vector and rotation angle at time instant t, respectively. 
T(t) is the translation vector from Q(t) to the original point of the world 
coordinate system at time instant t. Displacement mapping can be depicted 
a s :  

Q' ( t )=Q(t)@(u(t)  ,v(t) ) (8-3) 

We can work out (U( t ) ,V( t ) )  depending upon the planned paths and 
calculate the movement sequences which make animated characters move 
on the planned paths using equation (8-3). 

A few artificial motion properties, such as slipping and two legs hang- 
ing in the air, will be involved in the initial motion resulting from above 
motion transformation. The reason for these artifacts is that some essen- 
tial spatio-temporal constraints are not imposed by the ambient virtual 
scene or animators. Therefore, we need to apply motion collaboration a- 
mong the characters and the virtual environment to produce enough essen- 
tial constraints for solving natural continuous movement for each character 
in the following subsection. 

8.1 .3 .2  Solving Continuous Motions Based on Spatio-temporal Constraints 

In a scene, specific spatio-temporal constraints should be imposed for mul- 
tiple animated characters to cooperate with each other at the same time. 
The aim of a spatio-temporal constraint method presented by Gieicher Es? is 
to produce motion, which satisfies spatio-temporal constraints and minimi- 
zes objective function of movement. Generally, spatio-temporal constraints 
specify what a character will act in a certain space and time, while objec- 
tive function specifies how to accomplish this motion. Continuous motion 
solving produces a dynamic motion, which satisfies both the specified spa- 
tio-temporal constraints and objective function. 
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Spal;io-temporal Constraints 

Spatio-temporal constraints are special restrictions on a charac te r ' s  move- 
ment imposed by the virtual environment and other characters in time and 

space. It specifies what  the Character does, which makes the character 
move depending upon ambient circumstance but preserves the vividness 
and inherent properties of motion. For spatio-temporal constraints ,  it can 
be specified dynamically or Kinematically. Dynamically,  the constraints to 
be considered are very complex. Therefore,  only kinematic spatio-tempo- 
ral constraints are generally considered so as to limit the movement  of 
character in space and time domains. Typically,  spatio-temporal con- 
straints are described as a set of equations. In continuous motion resol- 
ving, differential constraints are specified during a period of t ime, and 

they can be transformed to the constraints at one time instant. We solve 
each frame to satisfy constraint functions and objective function in move- 

ment sequences. 
Spatio-temporal constraints are commonly described as a set of con- 

strained equations, which can be described as: 

F(q(t )  ,po (t) ,... ,pn (t) ) = C  (8-4)  

where t is the time instant of character movement ,  q(t)  and pi( t )  are the 

parameters  o{ character movement  and C is a constant. 
Major spatio-temporal constraints used in continuous movement resol- 

ving include: 

�9 Position constraints:  q( t )=Co,  where Co is the position constant~ 

�9 Pose constraints:  pi ( t )=C1,  where Cl is the Euclid angle constant; 

�9 Position constraints supporting animated character body: q~ ( t )  = C2, 

where i is joint i and C2 is the position constant. 

Objective Function of Movement 

Objective function concerns how to accomplish a motion. In resolving con- 
tinuous motion,  after specifying objective function for character move- 

ment ,  the system is able to select an exclusive solution from a set o{ rea- 
sonable solutions. In general,  it is difficult to get a perfect objective func- 
tion, and users directly use constraints as objective function, the interac- 

tive performance of which enables the user  to make adjustments  by adding 
more constraints. Gleicher E8~ pointed out that  there are some drawbacks to 

simply minimize the magnitude of the parameter  vector. One particular 

problem is that different parameters  often have vastly different effects. To 

overcome these problems we use a weighted sum-of-squares of the parame- 
ters. Our objective can be seen as an approximation to the function that  
minimizes the displacement from the ideal position. 

In motion fusion, two major objective functions are as follows. 
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�9 Minimizing the difference of position between ideal joints and practical 

joints, which can be described as.. 

I t ~  16 

min (sum -- W ( t , k )  ~ ]1 pk (t) -- Pk (t) II 2dt) 
t .... k = 1 

where pk( t )  is the coordinate of joint k after motion fusion, i~k (t)  is 
the coordinate of joint k before motion fusion, tstart and t~a is the start 
and end in the region of motion edition, respectively, and W ( t , k )  is a 
weighted factor of joint k at time t. 

�9 Minimizing the difference of movement before and after motion edi- 

ting, which can be described as. 

min (sum = W ( t )  II Q ( t ) -  (t) l 2dt) 

where Q(t )  is the pose after motion editing, QZ (t) is the ideal pose, 
and W ( t )  is a weighted factor. 

Re-solving Continuous Movement 

The collision and constraints in motion fusion are described as a set of e- 
quations~ therefore, we can view the motion fusion problem as constrained 
numerical optimization. Non linear equations cover potentially large num- 
bers of constraints and variables since we create a single problem for multi- 
ple motions, which makes solving multi-character motion fusion all the 
more challenging. 

For simplicity, we can build approximations of the nonlinear problem 
for solving them. Iteration algorithms and initial solution, discussed a- 
bove, are used to obtain an exact solution. We use the algorithms dis- 
cussed in [-8], which belong to a class of sequential quadratic programming 
that has linear constraints and quadratic objective functions. Moreover, 
only equality constraints are considered in our solver. 

8 . 1 . 4  Motion Rectification 

The solved motion after discrete motion decision-making and continuous 
motion solving reveals a few limitations: (1) jitter resulted from linear in- 
terpolation, which lacks vividness and naturalness; (2) bumpiness of mo- 
tion trajectory was because continuous motion solving does not consider 
the smoothness of the trajectory; (3) an unnatural motion mode was se- 
lected for some characters. Therefore, motion rectification, namely the 
smoothing of the solved motion, must be applied. 

Filter of Motion Trajectory From the discussion above, we know that 
the translation vector of motion is composed of a set of discrete moving 
points. We adopt the following motion filter method: fit the discrete 
points, and then generate the curve of motion, which minimizes the differ- 



8 Intelligent Techniques for Character Animation 279 

ence between the specified trajectory and the solved curve. The generated 
continuous curve is then used to update the translation vector of motion se- 
quence. 

Imposing Constraints of Feasible Motion Usually, it is impossible to 
create transitional motion by linear interpolation. For instance, the body 
may hang in the air. We re-impose feasible constraints on the motion and 
use inverse kinematics to solve the position of each joint for vivid motion. 

Filter of Limb Movement By using a Kalman filter, we can remove 
noise and overcome the inconsistency of limbs resulting from the above 
methods. 

8 . 1 . 5  Results and Discussion 

8.1.5.1 Results 

.Based on the discussion in the previous sections and other research [-157, o u r  

lab has developed a Video-based Human Animation (VBHA) system with 
two cameras. It is implemented with Visual C q - q -  and can run on the 
Windows X platform. Its main functions include calibration, feature track- 
ing, 3D reconstruction, motion editing, and multiple animated character 
motion fusion and production animation. 

In Fig. 8 .4 ,  we demoristrate the main ideas of multi-character motion 
fusion. The motion trajectories of four characters planned by the animator 

Fig. 8.4 Process of motion collaboration and solving 
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are shown in Fig. 8.4 (a)~ the spheres denote starting points and the rec- 
tangles denote ending points of animated characters. Fig. 8 .4  (b)  shows 
four possible collisions o{ multiple animated characters'  motion detected 
by the system (denoted by a circle) and the functions specified by the ani- 
mator (denoted by a dashed circle). Discrete motion modes and con- 
straints, which result from motion collaboration and collision detection, 
are transported to the motion-solving layer. The trajectory o{ continuous 
movement solved by our system can be seen in Fig. 8 .4(c) .  

To test the feasibility and efficiency of the multi-character motion fu- 
sion approach presented in this section, we fuse multiple motions of ani- 
mated characters into one scene with captured motion data. Fig. 8.5 shows 
the experimental result that fuses motions of four characters into one non- 
structured virtual environment with a door and a barrier. Animator speci- 
fies initial motion trajectories of each character and passive collaboration, 
such as handshaking, while the system automatically selects the motion 
mode and produces continuous movement of each character. In the motion 
collaboration layer, once having detected the door in the scene, the system 
selects the motion mode depending on the relative height of the character 
and the door. Similarly, when the barrier is detected, the system makes 
the decision of spanning the barrier independently. In the motion-resolving 
layer, continuous movements of each character are generated based on spa- 
tio-temporal constrain:cs and motion mode. From Fig. 8 .5 ,  we can see that 
feasible discrete motion mode and vivid continuous movement can be gen- 
erated by our system. 

Analysis of the results of our system reveals three limitations of fusing 
the motions of multiple virtual characters. 

Fig. 8. $ Multiple animated characters motion fusion 
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�9 First ,  it is essential for our system to save the 3D position o{ the vir- 

tual environment beforehand. Unlike the human, our system cannot 
reconstruct a 3D virtual environment automatically. Consequently, a 
complex virtual environment is still not practical. 

�9 Second, a DSM can make an intelligent decision of motion mode. But 

a perfect database of constraints and behavior is required, which is 
difficult to obtain. Moreover, once a suitable rule of DSM for some 
character is not found in the database, DSM will fail. As the result, 
we think that machine learning should be introduced to improve the 
decision-making of DSM. 

�9 Finally, in fusing the motions of multiple virtual characters, our sys- 

tem has not finished planning the path for each character automatical- 
ly. At present, we specify the path for each character manually. 

8.1 .5 .2  Discussions 

This section presents a new idea of multi-character motion fusion and its 
relevant implementation approaches. By fusing motions captured in a 
structured environment into one non-structured virtual environment, we 
have studied and implemented the collaboration between characters as well 
as the collaboration between character and virtual environment. The DSM 
method, adopted in solving discrete motion mode, enhances the perception 
and self decision-making of the virtual characters as well as improving the 
automation degree of multiple animated characters Working cooperatively 
in complex circumstances. Moreover, motion transformation presented in 
this section improves the reusability of motion capture data and simplifies 
the process of solving continuous movement by redirecting original motion 
data to a new path in a virtual environment through cycle extension and 
displacement mapping. High automation and high reusability make our 
presented approach highly applicable in computer animation and computer 
games. 

Further studies on our multi-character motion fusion approach should 
be concentrated on the following. (1) In discrete motion mode decision- 
making, the number of rules in DSM determines the correctness of reason- 
ing. A better decision-making capability should be studied for a complex 
environment. (2) In motion fusion, constraints imposed by a complex vir- 
tual environment increase as the number of the characters increase, and 
computation complexity rises. Further research is expected to improve the 
efficiency of the algorithm and lower the computation complexity. (3)  
There is a trend for studying autonomous cooperation among several char- 
acters in the computer animation field. We should strengthen the artificial 
life science application in computer animation. 
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8.2 A Script Engine for Realistic Human Motion Generation 

Due to the popularity o{ optical motion capture system, more and more re- 
alistic human motion data can be acquired easily. In recent years, large and 
highly detailed human motion database is commercially available and wide- 
ly used in various applications such as video games, animation films, 
sports simulations and virtual reality. Therefore, many researchers have 
focused on how to edit, manipulate and reuse the existing motion data. 

In practical situations, most of the time, users need an engine (or ap- 
plication) to produce long, complex and controllable human movement se- 
quence directly and efficiently. And this engine (or application) should 
meet the following requirements: 

�9 It should be a high level approach and focus on producing long, com- 

plex and controllable human movement sequence instead of a short 
motion clip ; 

�9 It can be encapsulated as an engine and used in various applications, 

such as video games, animation production, sports simulations and 
virtual reality; 

�9 It should be extendable and flexible for adapting various kinds of hu- 

man motion dataset, such as simple locomotion and complex fighting 
motions; 

�9 By this engine (or application), the generated results should be reus- 

able for further editing or improvement; 

�9 It should have multiple user interfaces, such as normal text typing, 

GUI or peripheral input equipments, and can be used easily and intui" 
tively. 

But to our knowledge, there are very few approaches or tools which 
have been developed to meet the above-mentioned requirements. So in this 
chapter we propose a framework of script engine based on well-organized 
MoCap database to achieve this goal. 

Firstly,  motion dataset, which contains some realistic and standard hu- 
man motion clips for special application (such as some simple locomotion 
{or avatar navigation in virtual reality, or a set of fighting motion clips {or 
video games),  is obtained by optical motion capture system or skilled ani- 
mators. For each motion dataset, every motion clip is well-segmented, an- 
notated and stored in motion database. Then users can generate or edit 
motion scripts (or script commands) by common TXT editor, graphical 
user interface or some peripheral input equipments (such as keyboard, 
mouse or joystick, etc). In movement generation processing, motion 
scripts are decomposed into sequential commands which are used to re- 
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trieve proper motion clips from motion database. Then the retrieved mo- 
tion clips are assembled into final realistic human movement sequence. Ac- 
counting to the incremental motion datasets for some special applications, 
users can define their own motion element table for motion script and par- 
ser. W h a t ' s  more,  the script used in this framework is defined as XML 
style which is convenient to reuse, extend and manipulate. Fig. 8.6 gives 
the workflow of our framework. 

Fig. 8.6 The workflow of our framework 

8 . 2 . 1  Motion Database Setup 

Logically, the whole motion database can be divided into several datasets 
and each dataset contains some standard motion clips which can be reused 
in different applications. For example, a locomotion dataset used for ava- 
tar navigation in virtual 
reality contains standard 
walk,  run,  and jump motion 
clips, a fighting dataset used 
for game development con- 
tains punch and kicking mo- 
tions, and a sports dataset 
used for gymnastics simula- 
tion contains some standard 
gymnastic actions, etc. Fig. 
8.7 gives the logical architec- 
ture of motion database. 

After motion capture, the 
original TRC (9 motion data Fig. 8.7 Logical architecture of motion database 

are converted into BVH mo- 

(9 TRC: The original motion data file from Motionanalysis optical motion cupture system. 
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tion files and each motion clip is well-segmented,  annotated and stored in 

motion database. For the periodical movements ,  only one complete cycle is 

stored. Fig. 8.8 gives a snapshot of our motion database. 

Motion 
ID DataSet 

ElementName 

13 locomotion JumpUp 

14 locomotion JumpUp 

15 locomotion JumpDown 

16 locomotion JumpDown 

17 locomotion JumpDowm 

18 locomotion Walk 

19 locomotion Walk 

20 locomotion Walk 

21 locomotion Run 

22 locomotion Run 

23 locomotion Run 

Height 

normal 

low 

high 

normal 

low 

Length Filename 

D:\MotionEngine\MotionDB\Locomotion\jumpup_n. bvh 

D:\MotionEngine\MotionDB\Locomotion\jumpup_l.bvh 

D:\MotionEngine\MotionDB\Locomotion\jumpup_h. bvh 

D:\MotionEngine\MotionDB\Locomotion\jumpup_n. bvh 

D:\MotionEngine\MotionDB\Locomotion\jumpup_l.bvh 

long D:\MotionEngine\MotionDB\Locomotion\walk_l.bvh 

no• D:\MotionEngine\MotionDB\Locomotion\walk_n. bvh 

short D:\MotionEngine\MotionDB\Locomotion\walk_s. bvh 

long D:\MotionEngine\MotionDB\Locomotion\run_l.bvh 

normal D:\MotionEngine\MotionDB\Locomotion\run_n. bvh 

short D:\MotionEngine\MotionDB\Locomotion\run_s. bvh 

Fig. 8.8 Table in motion database 

The "DataSet"  column contains dataset name of each motion clip, it 
could be " locomotion",  "fighting mot ion" ,  or "sports  mot ion" ,  etc. And 
the users can create their own motion dataset and corresponding motion ta- 
ble. The "Mot ionE lemen tName"  column contains the motion element 
name which means the content of motion clip and corresponds to the 
" type" at tr ibute of (Mot ion )  tag in the motion script. " H e i g h t "  and 
"Length"  columns contains the physical properties of each motion clip, 
such as "high" property of " JumpUp"  motion means that this motion clip 
is a jump-up movement with big height. 

In this research, we set up a testing database that contains two data- 
sets ,  "locomotion" and "f ight ing" ,  for experiments.  There are totally 25 
standard motion clips in "locomotion" dataset and Table 8.2 gives the mo- 
tion clip list of this dataset. 

Table 8.2 Motion clips in "locomotion" data set 

Motion Element Name 

Walk 
Run 

Stepup 
Stepdown 
Stepover 

Jumpup 
Jumpdown 
Jumpover 

Height 

high normal low 

1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 

Length 

long normal short 

1 1 1 
1 1 1 

Stand 1 
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8 . 2 . 2  Motion Script 

By our framework of script engine, users can make motion scripts by com- 
mon TXT editor or some other interactive approaches, such as graphical 
user interface and peripheral input equipments. Actually, the motion 
script consists of some sequential tags which define the motion clips with 
specified physical properties. When the motion scripts are passed to the 
script engine, they are decomposed into divided commands to generate 
movement sequence. 

In our script engine, motion script is made and stored as XML style, 
which is a widely used markup language standard and convenient to reuse 
and extend. Fig. 8.9 gives an example of motion script segment and corre- 
sponding DTD file designed for the "locomotion" dataset. In the definition 
of DTD file in Fig. 8 . 9 ( b ) ,  we can see that the motion script consists of a 
group o{ (Motion) tags with different attributes. The attribute "type" cor- 
responds to the motion element in the "locomotion" dataset. The attrib- 
utes "height" and "length" mean the physical properties of motion clips. 
By combining the attributes of " type",  "height" and "length",  a specific 
motion clip can be indexed. The attribute "repeat" means the repeat num- 
ber of this motion clip in movement sequence. So the motion script in Fig. 
8 .9(a)  can be interpreted as follows. 

�9 The character starts with a "stand" motion; 

�9 Follows 3 cycles of "walk" movement with normal step-length; 

<? xml version="1.0" encoding="UTF-8"?> 
< ! DOCTYPE MotionSequence SYSTEM" me. dtd" 

,~ < MotionSequence) 
<Motion type--"stand" repeat----"I") (/Motion> 
( Motion type-- "walk" length= "normal" repeat = "3" ) (/Motion> 
<Motion type---- "jumpup" height---- "low" repeat= "I" ) (/Motion> 
<Motion type= "jumpdown" height= "low" repeat= "I") (/Motion> 
<Motion type---- "run" length= short" repeat----" 2") (/Motion> 
<Motion type= "stand" repeat= "I") (/Motion> 

(/MotionSequence) (a) 

Fig. 8.9 

< ? xml version="l. 0" encoding-----"UTF-8"?> 
< ! ELEMENT MotionSequence (Motion+) > 

< ! ELEMENT Motion ( $~ PCDATA) ) 

< ! ATTLIST Motion type 

( walk[ run[ stepup [ stepdown [ stepover [ jumpup [ jumpdown [ jumpover [ stand)' walk' ) 

( ! ATTLIST Motion height <high[ normal[low) 'normal' ) 

( ! ATTLIST Motion length (long[ normal[short) 'normal' > 

< ! ATTLIST Motion repeat CDATA' 1 ') 

(b) 

(a) Motion script {or "locomotion" dataset; (b) XML DTD file {or "loco- 

motion" dataset 
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�9 "jumpup" to a high place with low height~ 

�9 "jumpdown" from a high place with low height~ 

�9 Then follows 2 cycles of "run" movement with short step-length~ 

�9 Finally ends with a "stand" motion. 

If the users want to extend the motion script to adapt more kinds of 
motion elements and motion datasets, what they should do is to modify or 
replace the existing DTD file according to the content of motion dataset. 
For example, we can make a new DTD file and enable it to support the 
"fighting" motion elements in motion script (see Fig. 8.10).  

] < ? xml version= "I. 0" encoding= "UTF-8" ? > 
( ! ELEMENT MotionSequences (Motion+) > 
( ! ELEMENT Motion EMPTY> 
( ! ATTLIST Motion type 
(hookpunch I straightpunch I roundhousepunch ] uppercutpunch I frontkick ] sidekick ] 
turningkick] sidestep ] turningstep ] backwardstep ] forwardstep ] overstep ] ready- 
pose) ' readypose ~ > 
( ! ATTLIST Motion position (f]b)'f'> 

Fig. 8.10 A DTD file supporting "fighting" motion elements 

8 . 2 . 3  Motion Generation 

Before motion synthesizing, the motion scripts are analyzed by the stand- 
ard XML parser which generates a group of <Motion) tags. Each <Mo- 
tion) tag represents an independent motion. Then the corresponding mo- 
tion clips are retrieved from database and stitched together to synthesize 
the final movement sequence. 

8.2 .3 .1  Motion State Machine 

Motion State Machine (MSM) is a connected graph. Each node in MSM 
represents a motion element from motion dataset. Fig. 8.11 gives a MSM 
corresponding to the "locomotion" dataset. The directed links between 
nodes indicate state transitions, which mean that a state (motion element) 
can be followed by another state. Obviously, MSM is used to help us to 
determine proper transition between different motion states (motion ele- 
ments) and work out a sequence of proper motions. 

8 .2 .3 .2  Motion Stitch 

For each (Motion) tag, the corresponding motion clips can be retrieved 
from database by attribute values, which should be stitched together to get 
a complete motion sequence (see Fig. 8.12).  

In order to stitch two motion clips together,  the well-studied motion 
transition technology should be applied. But as shown in Fig. 8. 11, in 
practice some motion A cannot be directly connected to motion B. For ex- 
ample, there are two motion clips, the former is "walk" and the latter is 
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Fig. 8.11 Motion state machine for "locomotion" dataset 

Fig. 8.12 Motion Stitch. The dash-dot line represents a "walk" motion. It is fol- 
lowed by a "jumpup" motion, drawn in the green dot line. The padding 
part is a "stand" motion that is drawn in blue solid line. The motion clips 
should be stitched together to get smooth motion sequence 

" jumpup"  (see Fig. 8. 12). By the definition of MSM,  there is no direct 
connection between "walk"  and " jumpup" motion state,  so a short "s tand" 

motion clip should be inserted to make proper motion transition between 

them. 
Because the motion clips from motion database are well segmented,  

here we only use the simplified method 1-16] t o  deal with motion transitions. 

A transition is a mapping of similar segments between two motions A and 

B. The duration of the transition Tt .... is calculated by taking the average 
of the length of the two blending regions: 

Zt . . . .  =E (t~--t~ ) + (t~--t~) ) /2 (8-5) 

where t~, teA, t~ and t~ are the starting and the ending time of the transition 
region in each of the two motions. 
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Motion A and B are simply blended by fading out one while fading in 
the other. A monotonically decreasing blending function with a range and 
domain of [-0,1-] determines the relative contribution of the two motions. 

A sigmoid-like function, a = 0.5cos (jgn) -+-0.5, is used here. Over the 

transition duration,  t? moves linearly from 0 to 1 representing the fraction 

of the way through the transition intervals in each motion. If more natural 
transitions between motions are desired, approaches proposed in [-11,17] 

can be used here. 

8 . 2 . 4  Results and Discussions 

In experiments ,  we set up a motion database and developed two classical 
demo applications based on our proposed motion script engine. For "loco- 
motion" dataset ,  we developed an application to generate some navigation 

movement sequences offline. For "fighting" dataset, we developed a real-time 

application based on keyboard input to control the fighting actions of character. 

8.2.4.1 Motion Datasets 

We set up a motion database which contains two datasets:  locomotion" 

dataset and "fighting" dataset. All of the motion clips are performed by re- 
al actors and captured at 60 Hz frame rate by an optical motion capture 
system from MotionAnalysis.  The motion clips included in " locomotion" 
dataset are shown in Table 8.2.  And the motion clips of "f ighting" dataset 
are given in Table 8.3.  The "fore" at t r ibute value means that  this action is 
performed by the arm or leg whose positions in front of the body. There 
are totally 19 actions in the "f ight ing" dataset. All of these motion clips 
are stored in a motion database created by Microsoft Access 2003. 

Table 8.3 

Motion Element Name 

Motion clips in "fighting" dataset 

fore 

Position 

back 

HookPunch 1 1 
StraightPunch 1 1 
RoundhousePunch 1 1 
UppercutPunch 1 1 
FrontKick 1 1 
SideKick 1 1 
TurningKick 1 1 
SideStep 1 1 
TurningStep 1 1 
BackwardStep 1 

1 

Description 

ReadyPose 

Hook punch 
Straight punch 
Roundhouse punch 
Uppercut punch 
Kick front 
Kick side 
Kick with body turn 
Step side 
Change the face direction 
Jump backward 

ForwardStep 
OverStep 1 Step forward 

1 

Jump forward 

Ready pose for fighting 
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8.2.4.2 An Offline Application for Navigation Movements Synthesis 

In this experiment,  we developed a demo application by C g/ in Microsoft 
Visual Studio 2005. This application is based on the "locomotion" dataset 
and the corresponding XML DTD file is defined in Fig. 8 .9 (b ) .  Users can 
write motion script and generate final motion sequence efficiently with the 
convenient graphical user interface provided by this application. As shown 
in Fig. 8.13,  users can use "Tool Buttons" to generate or edit the script in 
"Script Editor" directly. And the "Motion Previewer" is used to preview 
the generated motion sequence. 

Fig. 8.13 Graphical user interface of offline application 

Fig. 8 .14(a)  gives the final motion sequence generated by our demo ap- 
plication with the scripts defined in Fig. 8 .9 (a ) .  As we can see, the engine 
inserted three "stand" motion clips into the entire motion sequence to en- 
sure the proper movement transitions. As shown in Fig. 8 . 1 4 ( b ) ,  the syn- 
thesized movement sequence can be applied into a simple scene to generate 
character animation sequence. 

8.2 .4 .3  A Real-time Application for Fighting Character Controlling 

Besides generating motion sequence with predefined scripts, our motion 
script engine can also be used in some real-time applications. For example, 
we can use our motion script engine to synthesize actions in real-time ac- 
cording to the online input of users. In this experiment, we developed a 
simple demo application by which users can control the character ' s  fight- 
ing actions with keyboard input. 

In this demo application, the "fighting" dataset listed in Table 8.3 is 
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Fig. 8.14 

Co) 

(a) Synthesized motion sequence; (b) Applying the resulting movement 
sequence into a simple scene 

Fig. 8.15 Synthesized "fighting" action sequence by keyboard input and the motion 
retargeting result on a character model 

used and the corresponding XML DTD file is defined in Fig. 8.10. In order 
to control the character ' s  actions by keyboard,  a group of hotkeys are de- 
fined to trigger the corresponding motion elements in "t?ighting" dataset,  
just like in the fighting games. Fig. 8.15 shows the synthesized "fighting" 
action sequence and the motion retargeting result on a character model. 
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8.2.4.4 Discussions 

In this section, we propose a flexible framework for human movement gen- 
eration. Based on motion script engine and MoCap database, users can 
synthesize realistic human movement sequence efficiently by writing simple 
scripts or inputting discrete commands. In order to synthesize reasonable 
and smooth movement sequence, we integrate the Motion State Machine 
into the motion script engine which ensures the proper transitions between 
different motion elements intelligently. Furthermore,  the definition of mo- 
tion script is under the XML schema which guarantees the flexibility. Us -  
ers can modify and edit the existing motion sequence easily and efficiently. 
And if the users want to make a movement sequence including some new 
motion elements, what they should do is only to supply the new motion 
clips and modify or replace the definition of the corresponding XML DTD 
file. Finally, we have developed two demo applications to show that our 
motion script engine works well and can be used as an embedded engine of 
motion synthesis into multiple applications, such as Virtual Reality, video 
game, animation software and sports simulation system, etc. 

In the future work,  we would like to improve the current work on three 
aspects. First ,  add some finer controlling functions into current motion 
script framework. By the current approach, users cannot control the de- 
tails of character 's  movement by scripts, such as movement path control- 
ling, motion style controlling, etc. So in the next research, we ' l l  add mo- 
tion path controlling and data based motion synthesis mechanism into the 
current framework, which might help users to genera~te more complex 
movement sequence. Second, extend the current motion script engine to 
support crowd movement synthesis, which is very useful for crowd anima- 
tion and simulations. Third, extend motion script engine to support interactive 
human movements, such as handshaking and fighting between characters. 

8 .3  Automatic Generation of Human Animation Based on Mo- 
tion Programming 

As introduced at the beginning of this chapter, many methods focused on 
editing and synthesizing new motions have been proposed, which satisfy 
users '  definitions using existing data. However,  these methods cannot 
deal with the characters'  interactions with virtual environment or automat- 
ically generate human-like character animations in virtual environment. 

Interactive motion oriented methods are recently proposed to solve the 
problem. They focus on how to synthesize interactive motions in virtual 
environment or adapt existing motions derived from specific motion orien- 
ted methods to virtual environment, such as synthesizing interactive m o -  
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tions for manipulating some virtual objects, adapting existing motions to 
tasks of virtual environment navigation and producing navigation anima- 
tions automatically, etc. 

Yamane, et al. E187 presented a technique for synthesizing motions for 
object manipulation tasks i n  virtual environment. Given user-specified 
start and goal positions for an object, their algorithm relies on a random- 
ized algorithm to find a feasible path for the manipulated object. The plan- 
ning process is informed by a database of natural human postures for simi- 
lar tasks and model-based balance and collision constraints, which at- 
tempts to combine the good features of model-based and data-driven ap- 
proaches. 

Choi, et al. E19~ brought in probabilistic model to build up a graph of 
footprints in a scene. The result of their research showed that the charac- 
ter can respond to the virtual scene through the calculated footprint posi- 
tions and orientations. Several methods to promote the result route were 
implemented in this paper. 

In [-20], a novel approach was proposed to evaluate a motion graph for 
navigation tasks in virtual environment. They defined metrics for evalua- 
ting expected path quality and coverage of specific motion graph for a given 
environment. An improved motion graph was further embedded into a par- 
ticular environment to get more natural and feasible navigation animations. 

In digital entertainment applications, especially in video games and ani- 
mation films, there are so many interactions between characters and virtu- 
al environment. Given a virtual environment, animators must adapt the 
characters'  movements to it manually, which is a boring and time-consu- 
ming job. We are researching how to help animators to build up sequences 
of realistic motions interactively or automatically. The research in [-19] is 
something near the point. But actually they didn ' t  handle the overlapping 
surfaces. And they did the motion mapping only within tens of clips and 
the users cannot change or refine the results interactively. 

8 . 3 . 1  Overview 

8.3.1.1 Clip Families 

Generally speaking, there are many kinds of motions that can be per- 
formed by characters in virtual environment, such as walking, running and 
jumping, etc. In this section, we will show a ten-family-structure motion 
scripting in the following parts. We define a motion clip as. 

m--{f ,P} (8-6) 

where m is a motion clip, f is the family it belongs to, and P is the param- 

eters vector corresponding to the specific family. A family is a set of mo- 

tions of the same type, which has a few parameters (see Table 8 .4) .  Clip 
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Parameters and bias coefficients of motion family 

Motion Family Parameters Bias 
Walk path length 0.1 
Run path length 0.2 

Step down height, width 0.3 
Jump down height, width 0.4 

Step up height, width 0.5 

Jump up height, width 0.6 

Step over height, width 0.7 

Jump over height, width 0.9 

Leap over height, width 0.8 

Stand none 0.0 

families and corresponding parameters  will be used in mot ion selection and 

mot ion acquisition processing.  

8 .3 .1 .2  Motion State Machine (MSM) 

In Fig. 8 . 1 6 ,  the directed links be tween  states  indicate state t rans i t ions ,  

which mean that  a s tate (a mot ion from a family) can be followed by an- 

o ther  state (a  mot ion from another  family,  or another  mot ion from the 

same family) .  What  we do to generate  a sequence o{ animat ion is to pro- 

gram on this M S M ,  work  out a sequence of proper  mot ions  and sti tch 

them together .  

As shown in Fig. 8 . 1 6 ,  our sys tem is based on the mot ion capture tech- 

niques. The  MSM plays a role as the categorizing s tandard  and gives us in- 

s t ruc t ions  to collect mot ion clips and build the database.  All mot ion clips 

are classified and parameter ized after  being captured and are s tored in the 

Fig. 8.16 The role of motion state machine. We build the database by capturing real 
human performance. Then given a scene model, the system is able to gen- 
erate motion scripts for all planning tasks. And these operations are all 
based on the motion state machine 
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database which can be indexed by their family info and parameters. MSM 
also helps us to determine proper transition between motion clips belong- 
ing to different families. 

8.3.1.3 System Architecture 

Our system consists of five parts: MoCap database, motion acquisition 
module, motion planning module, visual user interface module and anima- 
tion generation module (see Fig. 8.17).  

Firstly,  MoCap data are captured, parameterized, stored and indexed in 
MoCap database. Users can use visual UI module to change or refine mo- 
tion scripts returned by motion planning module. Then motion acquisition 
module use motion scripts to retrieve proper motion clips from MoCap da- 
tabase, and these original clips are used directly or edited according to con- 
straints given in motion scripts. Finally these motion clips are delivered to 
animation generation module, and the result navigation animations are 
generated automatically and returned to users. 

Fig. 8.17 System architecture 

8 . 3 . 2  Roadmap Generation 

In a 3D scene, we use the concept o{ roadmap to build up a planner for the 
path [19.21], and other researches have already brought out some implemen- 
tations using roadmap. Here we implement a structure called pleat, i.e. a 
group of surfaces, to handle mesh information of virtual environment. 

8.3.2.1 Pleat Building and Node Sampling 

We first group the surfaces in the scene mesh which are continuous and 
have a low slope. We simply join two surfaces together if two vertices of 
each surface are very close and their normals are leaner than a threshold. 
After parsing all the surfaces in the scene mesh, we have several uneven 
surface groups which are called pleats. Each pleat, consisting of several 
surfaces, can hold the character on itself and let the characters move a- 
round without jumping or stepping (see Fig. 8.18).  

The reason why we build pleats is to reduce calculation in the roadmap 
node sampling, and to give bounds to the user interacting operations. This 
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Fig. 8.18 The pleats:there are two pleats in this figure. One is shaded in light grey 
and the other is in dark grey, other faces without shaded are unreachable 

will be discussed in the later section. 
We randomly sample the roadmap nodes by a probability model. Firstly 

we generate nodes by uniformly randomizing the positions. The density of 
the nodes is determined by the average translation value of common human 
motions, such as the average length of a single walking step. In considera- 
tion of efficiency, each pleat is treated as its projection on x o z  plane (as- 
suming that the direction of gravity is negative to the y axis). Because in- 
valid faces are already excluded by forming the pleats, there is no need to 
do the verification. 

8.3.2.2 Node Connection and Enhancement 

Usually there may be a huge number of nodes in a virtual scene. We con- 
nect each node to its K-closest neighbors in order to save time. As a result 
the calculation of the path finding algorithm is limited to O ( N K  + Nlog N) 
(Dijkstra algorithm, N is the number of nodes). We also give the connec- 
tion a threshold on its length to prevent the character from reaching a dis- 
tant place in a single action. This is a preset value related to the average 
length of a human action, such as the length of a single walking step. 

After generating nodes and edges, we then apply an enhancement to the 
roadmap with the method mentioned in [-19]. In general, the distribution 
of sampling nodes is uniform which will decay in a narrow area or a diffi- 
cult region, for example, a valley between unreachable cliffs. So the prob- 
ability model is employed to adjust the density of nodes and the intercon- 
nections in this area. For each node v in set V of all nodes in the roadmap, 
the probability density function can be described as. 

__ 1 / ~ v  1 (8-7) P ( v  l V )  iv + l . i. + 1  

where i~ is the number of edges connected to node v. This density function 
gives the difficult region more nodes to guarantee that the interconnection 
in this region will not decay any more (see Fig. 8 .19 (a ) ) .  Empirically the 
number of additional nodes between 1/3 and 1/2 of the initial number 
yields good performance E227. 
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Fig. 8.19 (a) The left figure shows the original roadmap without enhancement. On 
the bridge the interconnections decay for the lack of nodes. The right fig- 
ure shows the enhanced roadmap and this problem is fixed. (b)Route plan- 
ning result. Here shows the result route of an example scene. The spheres 
represent the node of the route and the sticks refer to motion families. The 
small dots are nodes of the roadmap. And the filaments are connections of 
the roadmap 

8 . 3 . 3  Route Planning 

After the generation of the roadmap, this stage is going to provide a se- 
quence of motions that connect the start position and goal position. We 
call this sequence a route. It contains not only the geometric information of 

the path,  but also the motions for each section of the path. The main idea 

is that our system chooses a motion family to apply to this connection in 

roadmap graph and give it a weight. Then we do a path finding procession 

on the weighted roadmap to get an optimal route. 

8.3.3.1 Motion Selection 

For every connection in roadmap, it means a character can move along 
from one terminal to the other. Normally we assume all the motions are 
walking straight ,  (e. g. walking on a large plane). However ,  some geo- 
metric constraints affect the connection. For example, connections across 

ditches or blocks do not allow a simple walking motion to apply and the 

stepping motion should be brought in. 
Obviously each connection costs the character some efforts to travel a- 

long. In our system, the cost consists of two parts:  the distance and the 

human bias, showing as follows: 
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C= aWd + fi~b (8-8) 

where wa is the distance between the two terminals and wu is the bias coef- 
ficient. The constant coefficients, a and j?, normalize the weights. 

Distance is the most intuitive cost while planning. And for the bias co- 
efficient, Table 8.4 weighting motions of various families shows how hu- 
mans bias different motions (Notice that the "stand" motion has an infini- 
tive coefficient since we don ' t  want to add recursive "stand" loops in any 
cases). This table shows the basic configurations for different motion fam- 
ilies. Users can define their own values for this table to achieve their de- 
sired motion selection results. 

Besides the bias coefficients, we use some thresholds for "step" and 
"jump" relative motion selection. If the height of hurdle is higher than half 
a meter, or the width of hurdle is wider than a meter, "jump" should be 
used to travel through it instead of "step". I t ' s  uncomfortable for a human 
to travel through higher or wider hurdle with "step" motions. If the width 
of hurdle is wider than 2 meters, "leapover" motion should be used to 
travel through it. These thresholds can be set by users or be derived from 
all usable "step" or "jump" relative motion clips in MoCap database. 

8.3.3.2 Path Finding 

With the cost for each connection, we can perform a path finding algorithm 
to tell the best route. When the start point and the goal point are set by 
animators, we simply treat them as new nodes. We then connect them to 
the surrounding nodes on the roadmap and give cost values to the corre- 
sponding connections. Finally the path finding algorithm is performed by 
use of Dijkstra algorithm (Fig. 8.19 (b) gives the final route planning re- 
sults). 

8 . 3 . 4  Interaction and Optimization 

8.3.4.1 Path Refining 

Since nodes are sampled randomly and the modifications from animators 
may be unbending, the result route may have some flaws such as the zig- 
zag pattern (see Fig. 8.20).  To make the path geometrically smoother, we 
consider the node positions of the route as discrete signals and apply a fil- 
ter mask to them E23~. A simple mask can be defined as. 

P~=Fi l t e r (P i )= l (P i -2+4Pi -1 -+-6Pi -F  4P~+l-b- Pi+2 ) (8-9) 

where P~ is the original position of the ith node on the route, P~' is the 
modified position of the ith node on the route. 

8 . 3 . 4 . 2  Immediate Interaction 

Animators would not easily work out the scripts manually in a complex 
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p . _ l  ~ ~ ] ~  '~  ~ . .  P i + l  o 

---.% 

Pi 

Fig. 8.20 Path refining 

virtual scene with mazes or obstructions. We need an automatic planner to 

work out the path and motion scripts on a maze like terrain or a scene with 

some stairs, blocks, ditches or something else. Although the outcome 

scripts can be somewhat optimized, usually they will not be fully accepted 

by animators. The interactive modification is thus supported in our sys- 

tem. 
Through the previous stages, we can get the route between any start- 

goal pairs. We then push the joy stick to animators. They may do some 

modifications to the route,  including changing the positions of the nodes or 

motion selection results (see Fig. 8 . 2 1 ( a ) ) .  

Here the structure of pleat is employed again to limit the position chan- 

Fig. 8.21 (a) Left is the planning result given by system. Users can drag sphere A 
to the position of sphere B by mouse. Right is the final route after modifi- 
cations; (b) The left figure shows the points given by users. Final route 
and corresponding motion selection results given by system are showed in 
they right figure 
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ging of each node. If a node from a calculated route is moved to another 
pleat, the possibility of how to plan the new route will explode vastly, be- 
cause not only continuous motion, but also overleap• motion such as 
jumping and stepping should be considered. Therefore, the node position 
modifications should be limited in its initial pleat. 

Animators can also give several points telling the system to follow in- 
stead of only the start point and the goal point and run the route planning. 
The sequence of points given by animators is treated as a list of routes and 
the route planning is applied to each segment (see Fig. 8 . 2 1 ( b ) ) .  In our 
system, changes can be applied in real-time. 

8.3.4.3 Motion Refining 

Motion refining is very important for getting reasonable motion selection 
results. All of the motion selection results embedded in the route should 
be validated. But unfortunately they may be unreasonable, especially in 
joint region of different pleats. For example, in a route planning result, 
the character should step up from Pi to Pi-1 and then step down from Pi to 
Pi+l. But if the distance be- 
tween Pi-1 and Pi+l is small, 
these two motion should be 
substituted by a stepping over 
motion between Pi-~ and Pi+l 
(see Fig. 8 .22) .  The same re- 
fining processing should be ap- 
plied to "jump up" and "jump 
d o w n "  motions when the 
width of hurdle is small. 

8.3 .4 .4  Scripts Generation 

The neighboring connections 

Pleat 1 

Pi-1 ~ .  , d h  
" 1 p , - -  

Par 

Pleat 

Pi+l 

Pleat2 

Step Over 

Step UP 

Step Down 

Fig. 8.22 Motion refining 

on the best route with the same motion family are grouped to generate mo- 
tion scripts. Since we want animators to access and modify the result free- 
ly, we use the XML pattern to store the motion script. Fig. 8.23 is an ex- 
ample o{ motion scripts. 

8 . 3 . 5  Mot ion Acquis i t ion 

In motion acquisition module, motion clips similar to the movements de- 
scribed in the motion scripts are retrieved and some constraint-based meth- 
ods are applied on them to get final desired motions. 

8.3.5.1 Motion Retrieval 

Here a simple motion capture system is used to  record real human per- 
{ormances. When motion clips from MoCap system are added into MoCap 
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( .9 xml version= "I. 0" encoding"UTE-B" .9 > 
( ! DOCTYPE MotionSequences SYSTEM"ms. dtd"> 
< Mot ionSequences > 
(Motion type--"walk"> 

(path> 
(point) Xl ,YI ,ZI (/point> 
( point> X2, Y2 ,Z2 (/point> 

,,, 

( point ) Xn, Yn, Zn(/point ) 
(/path> 

(/Motion> 
,~ 

< Motion type= "stepover" > 
(path> 

( point> XXI ,YYI ,ZZI (/point> 
( point >XX2, YY2, ZZ2 (/point) 
( point ) XX3, YY3, ZZ3 (/point > 

( point ) XX3, ~ 3 ,  ZZ3 (/point ) 
(/path> 

(/Motion> 
(/Mot ionSequences ) 

(a) 

( .9 xml version="l. 0" encoding"UTE-8".9) 
( ! ELEMENT MotionSequences(Motion+ ) > 
( ! ELEMENT Motion (Path) > 
( ! ATTLIST Motion type (walk[ run[ leapover ] stepup[ stepdown] stepover [ jumpup [ 

jumpdown [ jumpover) ) 
( ! ELEMENT Path(point,point+) ) 
( ! ELEMENT point( ~$ PCDATA) > 

(b) 
Fig. 8.23 (a) Motion scripts; (b) Corresponding DTD file 

database, we annotate their motion family info manually and the parame- 

ters corresponding to different motion families are extracted and stored au- 

tomatically (see Table 8.2). In MoCap database, the family info and cor- 

responding parameters are used to index each motion clip. 
Motion scripts describe the characters'  movements in virtual environ- 

ment. So in order to produce human-like character animation, raw motion 
clips which are similar to the movements described in motion scripts should 
be retrieved from MoCap database first. Here we implement a simple en- 
g ine to  retrieve motion clips from MoCap database by motion scripts. 

As shown in Fig. 8 .24 (a ) ,  type switcher first judges the motion family 
info, and then asks feature extractor to extract corresponding parameters 
from movements which are described in motion scripts. Finally motion 
matcher uses these parameters to find optimal motion clips from MoCap 
database and return them. 

All of the parameters used to query are extracted from the <Point> set 
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Fig. 8.24 (a) A simple retrieval engine. The input scripts come from the result of 
motion planning module~ (b) A motion retrieval example. The left bottom 
is the motion scripts segment corresponding to a "step over" motion. The 
right is the motion clip returned by motion retrieval engine. The unit in 
motion scripts is millimeter (mm) 

of the motion scripts. For "walk" and "run" motion, all of the (Point)s  in 
(Path)  segment are used to calculate the "path length" parameter (all of 
the points  are projected onto x o z  plane for calculating). For remainder 
motion, the first and the last (Point) in (Path) segment are used to calcu- 
late the "width" parameter (the distance on x o z  plane between these two 
points) and the difference between the maximum and the minimum of all 
(Point)s  ~ y axis value is set to "height" parameter. A motion retrieval ex- 

ample is given in Fig. 8 .24(b) .  

8.3.5.2 Parameterized Motion Synthesis 

For retrieval results which do not exactly match the parameters given in 
motion scripts, some constraint-based motion editing and synthesis meth- 
ods are applied. Parameterized motion synthesis method is used to get 
"s tep"  (up,  down and over) ,  "jump" (up,  down and over) and "leap o- 
ver" motions with desired "height" and "width" parameters. For example, 
a "step up" motion with height of 0 .5  m is desired but in database only 
"step up" motion clips with height of 0.4 m and 0.6 m are usable. 

The approach proposed in [24] is used to parametrically synthesize de- 

sired motions. Given a group of similar motion clips which belong to the 
same motion family, we automatically register them and apply blending tech- 
niques to create a continuous space of motions. Finally we can use parameters 
given in motion scripts to synthesize desired motion in this space of motions (see 
Fig. 8.25). Detailed description of this approach can be found in [-24]. 
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8.3.5.3 Motion Path Editing 

Given a motion clip from database,  how can 
we adapt it to the new path described in 
motion scripts (see Fig. 8 . 2 6 ( a ) ) ?  Simply 
changing the length and shape of motion 
path will result  in footskating and orienta- 
tion error of the character. With the ap- 
proach proposed in [-25-], we can retarget o- 
riginal motion path to new path efficiently. 

Firs t ly ,  we stretch the path length of 

original motion to the path length given in 

motion scripts and additional frames are 

added so that the motion arrives at the end 

of the path by repeating the cycle motions. 

Then path P of stretched motion and path 
p1 given in motion scripts are paramet-  
rically represented by two B-splines. We 
just use parameters o{ P to re-parameterize 
the path p1, which reserves the time and 
space constraints of original motion in new 

motion. Finally local frame coordinates o{ 

Fig. 8. 25 Visualization of the 
target locations for the right foot 
of "step up". Large yellow dots 
show parameters of retrieval re- 
sult motions; large red dot 
shows parameter o{ the synthe- 
sized motion; small grey dots are 
sampled parameters of space of 
motions 

original motion are used to adapt the orientation of character in new mo- 
tion. Detailed method is well described in [-25~. Motion path retargeting 

result is showed in Fig. 8 .26 (b ) .  

Fig. 8.26 (a) Path editing. The solid curve represents the path of a motion captured 
and stored in the database. The dot curve represents the path in the out- 
come route; (b) Motion path editing result. The left is an original motion. 
The right is the motion with new path whose length and shape are changed 
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8 . 3 . 6  Animation Generation 

The animation generation method used here is the same as that of Sect. 8 .2 .3 .  

8 . 3 . 7  Results and Discussions 

In exper imen t s ,  we captured about  300 mot ion clips with varied parame- 

ters  which were divided into 9 types (see Table  8 . 4 ) .  And another  " s tand"  

mot ion clip was used to mot ion stitch. 

In order  to confirm the feasibility of our approach ,  we implement  a pro- 

to type  sys tem and get some encouraging results .  As shown in Fig. 8. 27 

( a ) ,  given a complex virtual scene with s tar t  and goal points ,  the motion 

Fig. 8.27 (a) Animation result in a complex virtual environment; (b) Result with 
basic configuration of motion bias coefficients (right). The motion bias co- 
efficient of "jump over" motion is reset so that users can get new animation 
result (left); (c) Result generated by system (right). User can change 
motion selection result interactively (using "run" motion instead of "walk" 
motion) and get new animation result (left) 
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programming results and animation sequences are generated'automatically. 

Users can also change the basic configuration of motion bias coefficients to 

achieve different motion programming results and animation sequences. In 

Fig. 8 .27 ( b ) ,  bias coefficient of "jump over" motion is set with a small 

value, so different animation sequences are generated. In order to get var- 

ied animation results in the same virtual scene, users can change the motion 
selection results interactively. As shown in Fig. 8. 27 (c) ,  users can use "run" 

motion instead of "walk" motion to get a new animation sequences. 

The framework of our system is developed with Java 3D and works on a 
PC with PentiumIV 2.8 GHz C P U  and 1 G memory. The functions of mo- 

tion retrieval, motion path editing, parameterized motion synthesis and 

motion stitch are developed by C +  + and wrapped as DLL libraries which 

can be called in our system. And these DLL libraries can be conveniently 

replaced by the newer or better ones. Some performances of our system 
are given in Table 8.5. 

Table 8.5 Performances of our system 

Motion clip parameters extraction 

Motion planning (tiny scene, 20 
mX 10 m, about 600 nodes and 
4 ; 000 lines) 

Motion planning (large scene, 
70 m X 60 m, about 15, 000 
nodes and 167,000 lines) 

Motion scripts parsing and clip 
acquisition 

Motion stitch 

0.031 s/clip (average time) 

Roadmap generation Route planning 

2.07 s 0.34 s 

Roadmap generation Route planning 

13.9 s 34.1 s 

0.628 s/clip 
(average time) 

0. 037 s/2 clips (average time) 

In our framework proposed above, system can automatically program 
human motions and generate corresponding animation sequences in a virtu- 

al environment with specified start  and goal points,  and varied animation 

sequences can be achieved by two methods.  (1) change the basic configu- 

ration of motion bias coefficients; (2) change the motion selection results 

interactively by the visual user interface of our system. 

In addition, many novel specific motion oriented methods can be used in 

our framework to get more realistic animation results ,  such as motion 

transition method to get more natural transitions between motion clips, 

motion synthesis method to get desired motions,  motion retrieval method 
to get more precise retrieval results ,  etc. All of these methods can be im- 
plemented as a component and added into our framework conveniently. 

For a virtual scene with specified start and goal points,  final motion 
scripts can also be stored as standard XML files and reused to modify or 
generate animations efficiently without repeating path planning and motion 
selection. 
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Currently this framework is only for motion programming of a single 
character in a known virtual scene. In future we hope to extend it {or dy- 
namic 3D scene and multiple characters, which is more useful for anima- 
tion productions, games and motion simulations. 
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hierarchical motion descri- 
edge detection 59, 131 ption 229 
edge extraction 61 high frequency part 231 
Eigenface 122 Hough transform 62 
Eigen-representation 131 human-like character 291 
epipolar constraint 78 human motion database 282 
epipolar line 78 I 
errors summation 236 
euclid angle 274 incomplete motion 78 
expression clone 120 interactive motions 291 
expression ratio image 120 inverse kinematics 4, 235, 261 
extreme posture 197 ISOMAP 2, 190 

F J 

face interest region 131 joint feature point 79 
facial animation 8, 119 

K 
facial expression capture 141 
facial expression halluci- Kalman filter 14, 59 
nation 120 key-frame animation 1 
facial expression synthesis 119 key-frame editing 12 
feature tracking 279 key-frame extraction 185 
forward kinematics 4 key-frame techniques 245 
free-form deformation 8 key posture 197 
frequency band 231 keyword annotating 185 
frequency domain 231 kinematic method 4 
G K-mean clustering 190 

K-NN 135 
Gaussian convolution temp- L 
late 247 
Gaussian distribution 32, 187 Laplacian eigenmap 177 

Gaussian filter 62 layered curve simplification 
geodesic distance 122 (LCS) 199 
global minimum. 52 line extraction 59 
global nonlinear subspace linear equation 37 
learning 131 linear function 232 
global search 19 linear interpolation 6 
GMM 187 linear system 59 
graph cuts 125 local linear subspace learning 132 
gravity center 95, 202 local minima 52, 178 



locally linear embedding 
(LLE) 168 
locomotion 272 
low frequency part.  231 
low pass filter 14, 234 

M 

magnetic system 9 
Mahalanobis distance 196 
manifold 119 
manifold learning 121 
Markov network 125 
MDS 177, 190 
mechanical system 9 
metadata 185 
Microsoft Visual Studio 289 
minimum changing strategy 250 
MoCap database 185 
motion capture 10, 28 
motion clip 292 
motion cluster 240 
motion collaboration 268 
motion data preprocessing 256 
motion dataset 282 
motion displacement mapping 267 
motion execution 269 
motion families 297 
motion fusion 268 
motion generation space 244 
motion index tree 214 
motion optimization 
algorithm 235 
motion path synthesis 247 
motion planning 269 
motion programming 291 
motion reality 235 
motion rectification 278 
motion refining 298 
motion retrieval 300 
motion script 283 
motion solving 269 
motion state machine (MSM) 286 
motion stitch 286 

Index 309 

multiple style component 258 
motiofl synchronization 234 
motion synthesis 291 
motion trajectory 278 
motion units 240 
motion warping 13, 267 
multi-dimensional scaling 177 
multi-resolution filter 267 
multi-target motion interp- 
olation 267 

N 

navigation animation . 268 
nearest center (NC) 219 
nearest neighbor (NN) 135, 214 
Newton method 35, 108 
noise generator 253 
numerical optimization method 235 

O 

objective function 276 
objective movement equa-. 
tions 267 
optical flow 47 
optical system 9 
optimization a lgor i thm 268 

P 

parameterized motion synthesis 301 
particle filter 153 
passive collaboration 271 
path planning 19 
PCA 17, 122 
per-frame editing 13 
per-frame motion editing combing 
filter 14 
perspective projection 35, 162 
physical property based motion ed- 
iting 16 
pinhole camera model 163 
pleat 294 
pose recovery 50 
PPCA 187 
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primitive action 185 
probabilistic model 292 
probability graph model 153 

R , T 

radial basis function 124 
residual face 121 
roadmap 294 
root mean square (RMS) 138 

S 

scale function 231 U 
script engine 268 
seed point 79 
self-adaptive template 59 V 
self-decision-making abilities 268 
self-occlusion 77 
shape from motion (SFM) 165 
signal processing 269 
signal sampling process 232 

W 
silhouette extraction 47 
simple curve simplification 
(SCS) 203 
simulated annealing 52 
single style component 262 
skeleton model 199 
spatio-temporal constraint X 
based motion editing 14 
spatio-temporal constraint 7 
spatio-temporal domain 229 

Z 
sports simulation 268 
standard Gaussian distribution 247 

state variable 61 
state vector 80 
SVM 186 

texture mapping 172 
thinking-and-moving process 269 
time corresponding points 232 
time warping 232 
translation vector 188 , 
trembling details 232 

uniform sampling 197 

video-based human 
(VBHAS) 40, 73 
virtual reality 13 

animation 

wavelet function 231 
wavelet transform 238 
weak perspective projection 
model 162 
world coordinate 164 

XML 283 

zero crossing 187 




